

## Boolean Algebra

## Rab Nawaz Khan Jadoon

Department of Computer Science
Lecturer
DCS
COMSATS Institute of Information Technology

## Boolean algebra

- Boolean algebra is the mathematics of digital systems.
- A basic knowledge of Boolean algebra is indispensable to the study and analysis of logic.
- In the last lecture, Boolean operations and expressions in terms of their relationship to NOT, AND, OR, NAND, and NOR gates were introduced.


## Boolean Algebra

■ Variable, complement, and literal are terms used in Boolean algebra.

- A variable is a symbol (usually an italic uppercase letter) used to represent a logical quantity.
- Any single variable can have a 1 or a 0 value.
- The complement is the inverse of a variable and is indicated by a bar over the variable.
- A literal is a variable or the complement of a variable.


## Boolean Algebra

## - Boolean Addition

- Boolean addition is equivalent to the OR operation.
- In Boolean algebra, a sum term is a sum of literals.
- In logic circuits, a sum term is produced by an OR operation with no AND operations involved.
- Some examples of sum terms are




## Inverter

- Boolean Multiplication
- Boolean multiplication is equivalent to the AND operation.
- In Boolean algebra, a product term is the product of literals.
- A product term is equal to I only if each of the literals in the term is 1 .
- Some examples of product terms are $A B, A B$, $A B C$, and $A B C D$.



## Laws and rules of Boolean Algebra

- The most important rules of BA are,
- Apply the commutative laws of addition and multiplication
- Apply the associative laws of addition and multiplication.
- Apply the distributive law.
- Apply twelve basic rules of Boolean algebra


## Commutative law

- The commutative law of addition for two variables is written as,

$$
A+B=B+A
$$

- This law states that the order in which the variables are ORed makes no difference.
- in Boolean algebra as applied to logic circuits, addition and the OR operation are the same.
- Figure below shows the commutative law as applied to the OR gate and shows that it doesn't matter to which input each variable is applied.


Equivalent


## Commutative law

The commutative law of multiplication for two variables is,

$$
A B=B A
$$

This law states that the order in which the variables are ANDed makes no difference.


## Associative Laws

- The associative law
- The associative law of addition is written as follows for three variables:

$$
A+(B+C)=(A+B)+C
$$

- This law states that when ORing more than two variables, the result is the same regardless of the grouping of the variables.



## The associative law

- The associative law of multiplication is written as follows for three variables:

$$
A(B C)=(A B) C
$$

- This law states that it makes no difference in what order the variables are grouped when ANDing more than two variables.



## Distributive law

The distributive law is written for three variables as follows:

$$
A(B+C)=A B+A C
$$

This law states that ORing two or more variables and then ANDing the result with a single variable is equivalent to ANDing the single variable with each of the two or more variabIes and then ORing the products.


## Rules for Boolean Algebra

- Table on next slide enlist 12 basic rules that are useful in manipulating and simplifying Boolean expressions.
- Rules 1 through 9 will be viewed in terms of their application to logic gates.
- Rules 10 through 12 will be derived in terms of the simpler rules and the laws previously discussed.


## Rules for Boolean Algebra

$$
\begin{array}{ll}
\text { 1. } A+0=A & \text { 7. } A \cdot A=A \\
\text { 2. } A+1=1 & \text { 8. } A \cdot \bar{A}=0 \\
\text { 3. } A \cdot 0=0 & \text { 9. } \overline{\bar{A}}=A \\
\text { 4. } A \cdot \mathrm{I}=A & \text { 10. } A+A B=A \\
\text { 5. } A+A=A & \text { 11. } A+\bar{A} B=A+B \\
\text { 6. } A+\bar{A}=1 & \text { 12. }(A+B)(A+C)=A+B C
\end{array}
$$

$A, B$, or $C$ can represent a single variable or a combination of variables.

## Rules for Boolean Algebra

- Rule 10:

$$
\mathbf{A}+\mathbf{A B}=\mathbf{A}
$$

This rule can be proved by applying the distributive law, rule 2, and rule 4 as follows:

## Proof

$A+A B=A(1+B) \quad$ Factoring (distributive law)

$$
\begin{array}{ll}
=A \cdot 1 & \\
=A & \text { Rule 2: }(1+B)=1 \\
=A & \\
\text { Rule 4: } A \cdot 1=A
\end{array}
$$

## Rules for Boolean Algebra

The proof is shown in Table below, which shows the truth table and the resulting logic circuit simplification.

| $A$ | $B$ | $A B$ | $A+A B$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 |
| 1 | 0 | 0 | 1 |
| 1 | 1 | 1 | 1 |
| 1 |  |  |  |



## Rules for Boolean Algebra

Rule 11.

$$
A+A^{\prime} B=A+B
$$

This rule can be proved as follows:

$$
\begin{aligned}
A+\bar{A} B & =(A+A B)+\bar{A} B & & \text { Rule 10: } A=A+A B \\
& =(A A+A B)+\bar{A} B & & \text { Rule 7:A=AA} \\
& =A A+A B+A \bar{A}+\bar{A} B & & \text { Rule 8: adding } A \bar{A}=0 \\
& =(A+\bar{A})(A+B) & & \text { Factoring } \\
& =1 \cdot(A+B) & & \text { Rule 6: } A+\bar{A}=1 \\
& =A+B & & \text { Rule 4: drop the } 1
\end{aligned}
$$

## Example

- The proof is shown in Table 4--3, which shows the truth table and the resulting logic circuit simplification.

| $\boldsymbol{A}$ | $\boldsymbol{B}$ | $\overline{\boldsymbol{A} B}$ | $\boldsymbol{A}+\overline{\mathbf{A} B}$ | $\boldsymbol{A}+\boldsymbol{B}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 |
| 1 | 0 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 | 1 |
|  |  | $\hat{L}$ |  |  |



## Rules for Boolean Algebra

## Rule 12.

$$
(A+B)(A+C)=A+B C
$$

## Proof

$$
\begin{aligned}
(A+B)(A+C) & =A A+A C+A B+B C & & \text { Distributive law } \\
& =A+A C+A B+B C & & \text { Rule } 7: A A=A \\
& =A(1+C)+A B+B C & & \text { Factoring (distributive law) } \\
& =A \cdot 1+A B+B C & & \text { Rule 2: } 1+C=1 \\
& =A(1+B)+B C & & \text { Factoring (distributive law) } \\
& =A \cdot 1+B C & & \text { Rule } 2: 1+B=1 \\
& =A+B C & & \text { Rule } 4: A \cdot 1=A
\end{aligned}
$$

## Application

## Truth Table Proof of Rule 12

| $\boldsymbol{A}$ | $\boldsymbol{B}$ | $\boldsymbol{C}$ | $\boldsymbol{A}+\boldsymbol{B}$ | $\boldsymbol{A}+\boldsymbol{C}$ | $(\boldsymbol{A}+\boldsymbol{B})(\boldsymbol{A}+\boldsymbol{C})$ | $\boldsymbol{B C}$ | $\boldsymbol{A}+\boldsymbol{B C}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 |
| 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 |
| 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
|  |  |  |  |  |  |  |  |

Circuit Diagram


## Examples

- Simplify the boolean functions to minimum number of literals,
- $X+X^{\prime} Y=\left(X+X^{\prime}\right)(X+Y)=X+Y$
- $X\left(X^{\prime}+Y\right)=X X^{\prime}+X Y=0+X Y=X Y$
- $X^{\prime} Y^{\prime} Z+X^{\prime} Y Z+X Y^{\prime}$
$=X^{\prime} Z\left(Y^{\prime}+Y\right)+X Y^{\prime}$
$=X^{\prime} Z+X Y^{\prime}$


## DEMORGAN'S THEOREMS

- One of DeMorgan's theorems is stated as follows:
- The complement of a product of variables is equal to the sum of the complements of the variables.
- Stated another way,
- The complement of two or more ANDed variables is equivalent to the OR of the complements of the individual variables.
- The formula for expressing this theorem for two variables is,

$$
(X Y)^{\prime}=X^{\prime}+Y^{\prime}
$$

## DeMorgan's Theorem

- DeMorgan's second theorem is stated as follows:
- The complement of a sum of variables is equal to the product of the complements of the variables.
- Stated another way,
- The complement of two or more ORed variables is equivalent to the AND of the complements of the individual variables,
- The formula for expressing this theorem for two variables is,

$$
(X+Y)^{\prime}=X^{\prime} Y^{\prime}
$$

## Demorgan's Theorem

Gate equivalencies and truth table of both the demorgan's
Theorem is as follow,


NAND


Negative-OR

| Inputs |  | Output |  |
| :---: | :---: | :---: | :---: |
| $\mathbf{X}$ | $\mathbf{Y}$ | $\overline{X Y}$ | $\bar{X}+\bar{Y}$ |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 |

Truth Table Proof

## 2nd theorem Proof



NOR


Negative-AND

| Inputs |  | Output |  |
| :---: | :---: | :---: | :---: |
| $X$ | $Y$ | $\overline{X+Y}$ | $\overline{X Y}$ |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 |
| 1 | 0 | 0 | 0 |
| 1 | 1 | 0 | 0 |

## Truth Table Proof

## Example

- Proof the Following


## $\left[\left(A+B C^{\prime}\right)^{\prime}+D\left(E+F^{\prime}\right)^{\prime}\right]^{\prime}$

Proof

- Step 1. Identify the terms to which you ca n apply D eMorgan's theorems, and think of each term as a single term.

$$
\text { Let }\left(A+B C^{\prime}\right)^{\prime}=X \text { and } D\left(E+F^{\prime}\right)^{\prime}=Y \text {. }
$$

- Step 2. Since $(X+Y)^{\prime}=X^{\prime} Y^{\prime}$

$$
\begin{aligned}
& {\left[\left(A+B C^{\prime}\right)^{\prime}+D\left(E+F^{\prime}\right)^{\prime}\right]^{\prime}=\left[\left(\left(A+B C^{\prime}\right)^{\prime}\right)^{\prime}(D(E+\right.} \\
& \left.\left.\left.F^{\prime}\right)^{\prime}\right)^{\prime}\right]
\end{aligned}
$$

## Example

- Step 3. Use rule $9\left(A^{\prime \prime}=A\right)$ to cancel the double bars over the left term (this is not part of DeMorgan's theorem).

$$
\left[\left(\left(A+B C^{\prime}\right)^{\prime}\right)^{\prime}\left(D\left(E+F^{\prime}\right)^{\prime}\right)^{\prime}\right]=\left(A+B C^{\prime}\right)\left(D\left(E+F^{\prime}\right)^{\prime}\right)^{\prime}
$$

- Step 4. Applying DeMorgan's theorem to the second term,

$$
\left(A+B C^{\prime}\right)\left(D\left(E+F^{\prime}\right)^{\prime}\right)^{\prime}=\left(A+B C^{\prime}\right)\left(D^{\prime}+\left(\left(E+F^{\prime}\right)^{\prime}\right)^{\prime}\right)
$$

- Step 5. Use rule $9\left(A^{\prime \prime}=A\right)$ to cancel the double bars over the $E+F$ part of the term.

$$
\left(A+B C^{\prime}\right)\left(D^{\prime}+\left(\left(E+F^{\prime}\right)^{\prime}\right)^{\prime}\right)=\left(A+B C^{\prime}\right)\left(D^{\prime}+E+F^{\prime}\right)
$$

## BOOLEAN ANALYSIS OF LOGIC CIRCUITS

- Boolean algebra provides a concise way to express the operation of a logic circuit formed by a combination of logic gates so that the output can be determined for various combinations of input values.
- Boolean Expression for a Logic Circuit
- Constructing a Truth Table for a Logic Circuit


## Boolean Expression for a Logic Circuit

- To derive the Boolean expression for a given logic circuit, begin at the left-most inputs and work toward the final output, writing the expression for each gate.
- For the example circuit in Figure below, the Boolean expression is determined as follows:



## Boolean Expression for a Logic Circuit

- The expression for the left-most AND gate with inputs C and $D$ is CD.
- The output of the left-most AND gate is one of the inputs to the OR gate and $B$ is the other input. Therefore, the expression for the OR gate is B + CD.
- The output of the OR gate is one of the inputs to the right-most AND gate and $A$ is the other input. Therefore, the expression for this AND gate is A(B + $C D$ ), which is the final output expression for the entire circuit.
- Create the truth table for $A(B+C D)$


## Simplification using Boolean algebra

- Many times in the application of Boolean algebra, you have to reduce a particular expression to its simplest form or change its form to a more convenient one to implement the expression most efficiently.
- The approach taken in this section is to use the basic laws, rules, and theorems of Boolean algebra to manipulate and simplify an expression.
- This method depends on a thorough knowledge of Boolean algebra and considerable practice in its application,


## Example

Using Boolean algebra techniques, simplify this expression:

$$
A B+A(B+C)+B(B+C)
$$

Solution: The following is not necessarily the only approach.
Step 1: Apply the distributive law to the second and third terms in the expression, as follows:

$$
A B+A B+A C+B B+B C
$$

Step 2: Apply rule $7(B B=B)$ to the fourth term.

$$
A B+A B+A C+B+B C
$$

Step 3: Apply rule $5(A B+A B=A B)$ to the first two terms.

$$
A B+A C+B+B C
$$

## Example cont.

Step 4: Apply rule $10(B+B C=B)$ to the last two terms.
$A B+A C+B$

Step 5: Apply rule $10(A B+B=B)$ to the first and third terms.
B+AC

- At this point the expression is simplified as much as possible.


## Example Cont.



## Example

- Simplify the following Boolean expression to minimum number of literals, $\left[A B^{\prime}(C+B D)+A^{\prime} B^{\prime}\right] C$
Solution
Step 1: Apply the distributive law to the terms within the brackets.

$$
\left(A B^{\prime} C+A B^{\prime} B D+A^{\prime} B^{\prime}\right) C
$$

Step 2: Apply rule $8(B B=0)$ to the second term within the parentheses.

$$
\left(A B^{\prime} C+A \cdot O \cdot D+A^{\prime} B^{\prime}\right) C
$$

Step 3: Apply rule 3 (A.O.D $=0$ ) to the second term within the parentheses.

$$
\left(A B^{\prime} C+O+A^{\prime} B^{\prime}\right) C
$$

## Example cont.

Step 4: Apply rule 1 (drop the 0 ) within the parentheses.

$$
\left(A B^{\prime} C+A^{\prime} B^{\prime}\right) C
$$

Step 5: Apply the distributive law.

$$
A B^{\prime} C C+A^{\prime} B^{\prime} C
$$

Step 6: Apply rule $7(C C=C)$ to the first term.

$$
A B^{\prime} C+A^{\prime} B^{\prime} C
$$

Step 7: Factor out $\mathrm{B}^{\prime} \mathrm{C}$.

$$
B^{\prime} C\left(A+A^{\prime}\right)
$$

Step 8: Apply rule $6\left(A+A^{\prime}=1\right)$.

$$
B^{\prime} C .1=B^{\prime} C
$$

## Example

- Solve the expression to minimum number of literals

$$
A^{\prime} B C+A B^{\prime} C^{\prime}+A^{\prime} B^{\prime} C^{\prime}+A B^{\prime} C+A B C
$$

- Solution:

$$
\begin{aligned}
& A^{\prime} B C+A B^{\prime} C^{\prime}+A^{\prime} B^{\prime} C^{\prime}+A B^{\prime} C+A B C \\
& B C\left(A^{\prime}+A\right)+A B^{\prime} C^{\prime}+A^{\prime} B^{\prime} C^{\prime}+A B^{\prime} C \\
& B C .1+A B^{\prime}\left(C^{\prime}+C\right)+A^{\prime} B^{\prime} C^{\prime} \\
& B C+A B^{\prime} .1+A^{\prime} B^{\prime} C^{\prime} \\
& B C+A B^{\prime}+A^{\prime} B^{\prime} C^{\prime} \\
& B C+B^{\prime}\left(A+A^{\prime} C^{\prime}\right) \quad\left(A+A^{\prime} C^{\prime}=A+C^{\prime} \text { Rule11 }\right) \\
& B C+B^{\prime}\left(A+C^{\prime}\right) \\
& \mathbf{B C}+\mathbf{A} \mathbf{B}^{\prime}+\mathbf{B}^{\prime} \mathbf{C}^{\prime} \quad \text { (Ans) }
\end{aligned}
$$

## Self Questions

- Simplify the Followings if possible,
$=(A B+A C)^{\prime}+A^{\prime} B^{\prime} C$
$(A B)^{\prime}+(A C)^{\prime}+(A B C)^{\prime}$
$=A+A B+A B^{\prime} C$
- $\left(A^{\prime}+B\right) C+A B C$
$A B^{\prime} C(B D+C D E)+A C^{\prime}$


## Standard forms of Boolean expressions

- All Boolean expressions, regardless of their form, can be converted into either of two standard forms
. Sum-of-products (SOP) form
- Also called Minterms
- Product of Sum (POS) form
- Also called Maxterms
- Standardization makes the evaluation, simplification, and implementation of Boolean expressions much more systematic and easier.


## Sum of product (SOP) Form

- A product term was defined as a term consisting of the product (Boolean multiplication) of literals (variables or their complements).
- When two or more product terms are summed by Boolean addition. the resulting expression is a sum-ofproducts (SOP).
- Some examples are
- $A B+A B C$
- $\mathrm{ABC}+\mathrm{CDE}+\mathrm{B}^{\prime} \mathrm{CD}^{\prime}$
- $A^{\prime} B+A^{\prime} B C^{\prime}+A C$


## SOP (Minterms)

- Also, an SOP expression can contain a singlevariable like,

$$
A+A^{\prime} B C^{\prime}+B C^{\prime} D^{\prime}
$$

- Domain of a Boolean Expression
- The domain of a general Boolean expression is the set of variables contained in the expression in either complemented or uncomplemented form.
- For example, the domain of the expression $A^{\prime} B+$ $A B^{\prime} C$ is the set of variables $A, B, C$.


## SOP Form

- Truth Table for SOP form

| $\mathbf{x}$ | $\mathbf{y}$ | $\mathbf{z}$ | Terms |  |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | $\mathbf{x}^{\prime} \mathbf{y}^{\prime} z^{\prime}$ | $\mathbf{m}_{0}$ |
| 0 | 0 | 1 | $\mathbf{x}^{\prime} \mathbf{y}^{\prime} \mathbf{z}$ | $\mathbf{m}_{1}$ |
| 0 | 1 | 0 | $\mathbf{x}^{\prime} \mathbf{y} \mathbf{z}^{\prime}$ | $\mathbf{m}_{2}$ |
| 0 | 1 | 1 | $\mathbf{x}^{\prime} \mathbf{y z}$ | $\mathbf{m}_{3}$ |
| 1 | 0 | 0 | $\mathbf{x} \mathbf{y}^{\prime} \mathbf{z}^{\prime}$ | $\mathbf{m}_{4}$ |
| 1 | 0 | 1 | $\mathbf{x} \mathbf{y}^{\prime} \mathbf{z}$ | $\mathbf{m}_{5}$ |
| 1 | 1 | 0 | $\mathbf{x y z}$ | $\mathbf{m}_{6}$ |
| $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{x y z}$ | $\mathbf{m}_{7}$ |

- AND/OR Implementation of an SOP Expression
- Implementing an SOP expression simply requires ORing the outputs of two or more AND gates.
- A product term is produced by an AND operation, and the sum (addition) of two or more product terms is produced by an OR operation.
- Therefore, an SOP expression can be implemented by AND-OR logic in which the outputs of a number of AND gates connect to the inputs of an OR gate.


## SOP form

- Figure below for the expression

$$
X=A B+B C D+A C
$$

- The output $X$ of the OR gate equals the SOP expression.



## SOP form

- NAND/NAND Implementation of an SOP

Expression

- NAND gates can be used to implement an SOP expression.
- Using only NAND gates, an AND/OR function can be accomplished.
- The first level of NAND gates feed into a NAND gate that acts as a negative-OR gate.
- The NAND and negative-OR inversions cancel and the result is effectively an AND/OR circuit.


## SOP form



## SOP form

- Conversion of a General Expression to SOP Form
- Any logic expression can be changed into SOP form by applying Boolean algebra techniques.
- For example. the expression $A(B+C D)$ can be converted to SOP form by applying the distributive law.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C D})=\mathbf{A B}+\mathbf{A C D}
$$

## Examples

- Convert each of the following Boolean expressions to SOP form,
$-A B+B(C D+E F)$
$=A B+B C D+B E F$
- $(A+B)(B+C+D)$

$$
=A B+A C+A D+B B+B C+B D
$$

$-\left[(A+B)^{\prime}+C\right]^{\prime}$
$=\left((A+B)^{\prime}\right)^{\prime} C^{\prime}=(A+B) C^{\prime}$
$=A C^{\prime}+B C^{\prime}$
Problem: Convert $A^{\prime} B C^{\prime}+\left(A+B^{\prime}\right)\left(B+C^{\prime}+A B^{\prime}\right)$ to SOP form.

## Standard SOP Form

- SOP expressions in which some of the product terms do not contain some of the variables in the domain of the expression.
- For example
- $A^{\prime} B C^{\prime}+A B^{\prime} D+A^{\prime} B C^{\prime} D$
- Domain made up of the variables $A, B, C$. and $D$.
- complete set of variables in the domain is not represented in the first two terms of the expression.
- D or $\mathrm{D}^{\prime}$ is missing from the first term
- C and $\mathrm{C}^{\prime}$ is missing from the second term.


## SOP form

- A standard SOP expression is one in which all the variables in the domain appear in each product term in the expression.
- For example.
$-A B^{\prime} C D+A^{\prime} B^{\prime} C D^{\prime}+A B C^{\prime} D^{\prime}$


## STANDARD SOP

- Converting Product Terms to Standard SOP
- Step I. Multiply each nonstandard product term by a term made up of the sum of a missing variable and its complement. This results in two product terms. As you know, you can multiply anything by I without changing its value.
- Step 2. Repeat Step I until all resulting product terms contain all variables in the domain in either complemented or uncomplemented form. In converting a product term to standard form, the number of product terms is doubled for each missing variable


## Example

- Convert the following Boolean expression into standard SOP form:


## $A B^{\prime} C+A^{\prime} B^{\prime}+A B C^{\prime} D$

## Solution

$$
A B^{\prime} C=A B^{\prime} C\left(D+D^{\prime}\right)=A B^{\prime} C D+A B^{\prime} C D^{\prime}
$$

- In this case, two standard product terms are the result.
- The second term, $A^{\prime} B^{\prime}$, is missing variables $C$ or $C^{\prime}$ and D or $\mathrm{D}^{\prime}$, so first multiply the second term by $\mathrm{C}+$ $\mathrm{C}^{\prime}$ as follows.


## Example

$$
A^{\prime} B^{\prime}=A^{\prime} B^{\prime}\left(C+C^{\prime}\right)=A^{\prime} B^{\prime} C+A^{\prime} B^{\prime} C^{\prime}
$$

- The two resulting terms are missing variable $D$ or $\mathrm{D}^{\prime}$, so multiply both terms by $\mathrm{D}+\mathrm{D}^{\prime}$ as follows:

$$
\begin{aligned}
A^{\prime} B^{\prime}= & A^{\prime} B^{\prime} C+A^{\prime} B^{\prime} C^{\prime}=A^{\prime} B^{\prime} C\left(D+D^{\prime}\right)+ \\
& A^{\prime} B^{\prime} C^{\prime}\left(D+D^{\prime}\right) \\
= & A^{\prime} B^{\prime} C D+A^{\prime} B^{\prime} C D^{\prime}+A^{\prime} B^{\prime} C^{\prime} D+A^{\prime} B^{\prime} C^{\prime} D^{\prime}
\end{aligned}
$$

In this case, four standard product terms are the result.
The third term, ABCD, is already in standard form. The complete standard SOP form of the original expression is as follows:

## Example cont.

Accumulated terms are,
$A B^{\prime} C+A^{\prime} B^{\prime}+A B C^{\prime} D=A B^{\prime} C D+A B^{\prime} C D^{\prime}+A^{\prime} B^{\prime} C D$ $+A^{\prime} B^{\prime} C D^{\prime}+A^{\prime} B^{\prime} C^{\prime} D+A^{\prime} B^{\prime} C^{\prime} D^{\prime}+A B C^{\prime} D$

## Related Problem

## Convert the expression WX' $\mathbf{Y}+\mathbf{X} \mathbf{Y} \mathbf{Y Z}^{\prime}+\mathbf{W X} \mathbf{Y}^{\prime}$ to standard SOP form.

## SOP Term

- Binary Representation of a Standard Product Term

$$
A B^{\prime} C^{\prime}=1.0^{\prime} .1 \cdot 0^{\prime}=1 \cdot 1 \cdot 1 \cdot 1=1
$$

In this case, the product term has a binary value of 1010 (decimal ten).

Note
An SOP expression is equal to 1 only if one or more of the product terms in the expression is equal to 1.

## SOP form

## The Product-of-Sums (POS) Form

- When two or more sum terms are multiplied, the resulting expression is a product-of-sums (POS).
- ( $\left.\mathrm{A}^{\prime}+\mathrm{B}\right)\left(\mathrm{A}+\mathrm{B}^{\prime}+\mathrm{C}\right)$
$\square\left(A+B^{\prime}+C\right)\left(C+D^{\prime}+E^{\prime}\right)\left(B+C^{\prime}+D\right)$
$\square\left(A^{\prime}+B\right)\left(A^{\prime}+B^{\prime}+C^{\prime}\right)\left(A+C^{\prime}\right)$
- A POS expression can contain a single-variable term, as in the following i.e. $A^{\prime}$,

$$
A^{\prime}\left(A+B^{\prime}+C\right)\left(B^{\prime}+C^{\prime}+D\right)
$$

## POS Form

## - Truth Table of POS form

| Row\# | $A$ | $B$ | $C$ | Maxterms |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | $A+B+C=M_{0}$ |
| 1 | 0 | 0 | 1 | $A+B+C^{\prime}=M_{1}$ |
| 2 | 0 | 1 | 0 | $A+B^{\prime}+C=M_{2}$ |
| 3 | 0 | 1 | 1 | $A+B^{\prime}+C^{\prime}=M_{3}$ |
| 4 | 1 | 0 | 0 | $A^{\prime}+B+C=M_{4}$ |
| 5 | 1 | 0 | 1 | $A^{\prime}+B+C^{\prime}=M_{5}$ |
| 6 | 1 | 1 | 0 | $A^{\prime}+B^{\prime}+C=M_{6}$ |
| 7 | 1 | 1 | 1 | $A^{\prime}+B^{\prime}+C^{\prime}=M_{7}$ |

## POS Form

- Implementation of a POS Expression
- Implementing a POS expression simply requires ANDing the outputs of two or more OR gates.
- A sum term is produced by an OR operation. And the product of two or more sum terms is Produced by an AND operation.

POS Expression $(A+B)(B+C+D)(A+C)$.


## POS Form

- The Standard POS Form
- POS expressions in which some of the sum terms do not contain all of the variables in the domain of the expression. For example. the expression.

$$
\left(A+B^{\prime}+C\right)\left(A+B+D^{\prime}\right)\left(A+B^{\prime}+C^{\prime}+D\right)
$$

- It has a domain made up of the variables $A$. $B$. $C$, and D.
- A standard POS expression is one in which all the variables in the domain appear in each sum term in the expression. For example, $\left(A^{\prime}+B^{\prime}+C^{\prime}+D^{\prime}\right)\left(A+B^{\prime}+C+D\right)\left(A+B+C^{\prime}+D\right)$ is a standard POS expression.


## POS Form

- Converting a Sum Term to Standard POS
- Each sum term in a POS expression that does not contain all the variables in the domain can be expanded to standard form to include all variables in the domain and their complements.
- a non- standard POS expression is converted into standard form using Boolean algebra rule 8,

$$
\left(A \cdot A^{\prime}=0\right)
$$

- A variable multiplied by its complement equals O .


## POS Form

- Rules for Conversion

Step 1: Add to each nonstandard product term a term made up of the product of the missing variable and its complement. This results in two sum terms. As you know, you can add 0 to anything without changing its value.
Step 2: Apply rule 12, $A+B C=(A+B)(A+C)$
Step 3: Repeat Step 1 until all resulting sum terms contain all variables in the domain in either complemented or uncomplemented form.

## Example

- Convert the following Boolean expression into standard POS form:

$$
\left(A+B^{\prime}+C\right)\left(B^{\prime}+C+D^{\prime}\right)\left(A+B^{\prime}+C^{\prime}+D\right)
$$

## Solution

- The domain of this POS expression is $A, B, C, D$.
- The first term, $A+B^{\prime}+C$, is missing variable $D$ or $D^{\prime}$, so add DD' and apply rule 12 as follows:

$$
\begin{aligned}
& A+B^{\prime}+C=A+B^{\prime}+C+D D^{\prime} \\
& =\left(A+B^{\prime}+C+D\right)\left(A+B^{\prime}+C+D^{\prime}\right)
\end{aligned}
$$

- The second term, $B+C+D$, is missing variable $A$ or $A$, so add $\mathrm{AA}^{\prime}$ and apply rule 12 as follows:

$$
\begin{aligned}
B^{\prime}+C+D^{\prime} & =B^{\prime}+C+D^{\prime}+A A^{\prime} \\
& =\left(A+B^{\prime}+C+D^{\prime}\right)\left(A^{\prime}+B^{\prime}+C+D^{\prime}\right)
\end{aligned}
$$

- The third term, $A+B^{\prime}+C^{\prime}+D_{r}$ is already in standard form.


## POS Form Example

- The standard POS form of the original expression is as follows:
$\left(A+B^{\prime}+C\right)\left(B^{\prime}+C+D^{\prime}\right)\left(A+B^{\prime}+C^{\prime}+D\right)=$
$\left(A+B^{\prime}+C+D\right)\left(A+B^{\prime}+C+D^{\prime}\right)\left(A+B^{\prime}+C+\right.$
$\left.D^{\prime}\right)\left(A^{\prime}+B^{\prime}+C+D^{\prime}\right)\left(A+B^{\prime}+C^{\prime}+D\right)$

Related Problem
Related Problem Convert the expression $\left(A+B^{\prime}\right)(B+C)$ to standard POS form.

## Binary Representation of POS

- Binary Representation of a Standard Sum Term
- A standard sum term is equal to 0 for only one combination of variable values. For example, the sum term $A+B^{\prime}+C+D^{\prime}$ is 0 when $A=0, B=1, C=0$, and $D=1$.
- $A+B^{\prime}+C+D^{\prime}=0+1^{\prime}+O+1^{\prime}=0+O+O+O=0$
- In this case, the sum term has a binary value of 0101 (decimal 5).


## Converting Standard SOP to Standard POS form

- Therefore, to convert from standard SOP to standard POS, the following steps are taken:
Step 1:Evaluate each product term in the SOP expression. That is, determine the binary numbers that represent the product terms.
Step 2:Determine all of the binary numbers not included in the evaluation in Step 1.
Step 3:Write the equivalent sum term for each binary number from Step 2 and express in POS form.

Using a similar procedure, you can go From POS to SOP.

## EXAMPLE

- Convert the following SOP expression to an equivalent POS expression:

$$
A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B C^{\prime}+A^{\prime} B C+A B^{\prime} C+A B C
$$

## Solution

The evaluation is as follows:

$$
000+010+011+101+111
$$

Since there are three variables in the domain of this expression.
There are a total of eight ( $\mathbf{2}^{\mathbf{3}}$ ) possible combinations.
The POS must contain the other three which are 001,100, and 110.

## Example

- Remember, these are the binary values that make the sum term 0 . The equivalent POS expression is,

$$
\left(A+B+C^{\prime}\right)\left(A^{\prime}+B+C\right)\left(A^{\prime}+B^{\prime}+C\right)
$$

## Converting SOP Expressions to Truth Table Format

- SOP expression is equal to 1 only if at least one of the product terms is equal to 1 .
- A truth table is simply a list of the possible combinations of input variable values and the corresponding output values (1 or 0).
- For an expression with a domain of two variables, there are four different combinations of those variables ( $2^{2}=$ 4).
- For three variable we have $2^{3}=8$ and so on for the higher value of variables same mechanism to be applied.


## Example

- The first step in constructing a truth table is to list all possible combinations of binary values of the variables in the expression.
- Finally, place a 1 in the output column (X) for each binary value that makes the standard SOP expression a 1 and place a 0 for all the remaining binary values.
- Develop a truth table for the standard SOP expression $A^{\prime} B^{\prime} C+A B^{\prime} C^{\prime}+A B C$.


## Example

- The binary values that make the product terms in the expressions equal to 1 are
$A^{\prime} B^{\prime} C: 001 ; A B^{\prime} C^{\prime}: 100 ;$ and $A B C: 111$.

| INPUTS |  |  | OUTPUT |  |
| :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{A}$ | $\boldsymbol{B}$ | $\boldsymbol{C}$ | $\boldsymbol{X}$ | PRODUCT TERM |
| 0 | 0 | 0 | 0 |  |
| 0 | 0 | 1 | 1 | $\bar{B} \bar{B} C$ |
| 0 | 1 | 0 | 0 |  |
| 0 | 1 | 1 | 0 |  |
| 1 | 0 | 0 | 1 | $A \bar{B} \bar{C}$ |
| 1 | 0 | 1 | 0 |  |
| 1 | 1 | 0 | 0 |  |
| 1 | 1 | 1 | 1 | $A B C$ |

## Converting POS Expressions to Truth Table Format

- Recall that a POS expression is equal to 0 only if at least one of the sum terms is equal to 0 .
- Convert the POS expression to standard form if it is not already.
- Finally, place a 0 in the output column (X) for each binary value that makes the expression a 0 and place a 1 for all the remaining binary values.


## Example

- Determine the truth table for the following standard POS expression:
$(A+B+C)\left(A+B^{\prime}+C\right)\left(A+B^{\prime}+C^{\prime}\right)\left(A^{\prime}+B+C^{\prime}\right)\left(A^{\prime}+B^{\prime}+C\right)$


## Solution

There are three variables in the domain so eight possible binary values would be,

- The binary values that make the sum terms in the expression equal to 0 are,
$-A+B+C: 000 ; A+B^{\prime}+C: 010 ; A+B^{\prime}+C^{\prime}: 011 ;$
$A^{\prime}+B+C^{\prime}: 101 ;$ and $A^{\prime}+B^{\prime}+C: 110$.


## Example

- For each of these binary values, place a 0 in the output column as shown below in the table.

| INPUTS |  |  | OUTPUT | SUM TERM |
| :---: | :---: | :---: | :---: | :---: |
| $A$ | $B$ | $C$ | $X$ | $(A+B+C)$ |
| 0 | 0 | 0 | 0 |  |
| 0 | 0 | 1 | 1 | $(A+\bar{B}+C)$ |
| 0 | 1 | 0 | 0 | $(A+\bar{B}+\bar{C})$ |
| 0 | 1 | 1 | 0 |  |
| 1 | 0 | 0 | 1 | $(\bar{A}+B+\bar{C})$ |
| 1 | 0 | 1 | 0 | $(\bar{A}+\bar{B}+C)$ |
| 1 | 1 | 0 | 0 |  |
| 1 | 1 | 1 | 1 |  |

Problem: Develop a truth table for the following standard POS expression:

$$
\left(A+B^{\prime}+C\right)\left(A+B+C^{\prime}\right)\left(A^{\prime}+B^{\prime}+C^{\prime}\right)
$$

## Determining Standard Expressions from a Truth Table

- List only the binary values of the input variables for which the output is 1 .
- Convert each binary value to the corresponding product term by replacing each 1 with the corresponding variable and each 0 with the corresponding variable complement.


## $1010 \rightarrow A^{\prime} C^{\prime}$

- If you substitute, you can see that the product term is

1 , $\quad A B^{\prime} C^{\prime}=1.0 .1 .0=1.1 .1 .1=1$

## Cont...

- To determine the standard POS expression represented by a truth table, list the binary values for which the output is 0 .
- For example. the binary value 1001 is converted to a sum term as follows:

$$
1001 \rightarrow A^{\prime}+B+C+D^{\prime}
$$

- If you substitute, you can see that the sum term is 0 ,
$A^{\prime}+B+C+D^{\prime}=1^{\prime}+0+0+1^{\prime}=0+0+0+0=0$


## Example

- From the truth table, determine the standard SOP expression and the equivalent standard POS expression.

| INPUTS |  |  | OUTPUT |
| :---: | :---: | :---: | :---: |
| $A$ | $B$ | $C$ | $X$ |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |

## Example cont...

## - Solution

- There are four I $s$ in the output column and the corresponding binary values are 011, 100. 110. and 111.
- Convert these binary values to product terms as follows:

$$
\begin{aligned}
& 011 \longrightarrow \bar{A} B C \\
& 100 \longrightarrow A \bar{B} \bar{C} \\
& 110 \longrightarrow A B \bar{C} \\
& 111 \longrightarrow A B C
\end{aligned}
$$

## Example cont...

- The resulting standard SOP expression for the output $X$ is,

$$
X=A^{\prime} B C+A B^{\prime} C^{\prime}+A B C^{\prime}+A B C
$$

- For the POS expression, the output is 0 for binary values 000. 001, 010, and 101. Convert these binary values to sum terms as follows:

$$
\begin{aligned}
& 000 \longrightarrow A+B+C \\
& 001 \longrightarrow A+B+\bar{C} \\
& 010 \longrightarrow A+\bar{B}+C \\
& 101 \longrightarrow \bar{A}+B+\bar{C}
\end{aligned}
$$

## Example cont...

- The resulting standard POS expression for the output $X$ is,

$$
X=(A+B+C)\left(A+B+C^{\prime}\right)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C^{\prime}\right)
$$

## Note

Attempt the relevant exercise question at the end of this chapter.


