

COMPLEMENTS

Department of Computer Science

DCS

COMSATS Institute of Information Technology

RAB NAWAZ KHAN JADOON

LECTURER CIIT LAHORE

- Complements are used in,
 - Digital computers for simplifying the subtraction operation.
 - There are two types of complements for each base-r system.
 - r's complement
 - (r-1)'s complement
 - When the value of the base is substituted the two types receive.
 - 2's and 1's complements for binary numbers, or
 - 10's and 9's for decimal numbers.

The r's Complements

 Given a positive number N with an integer part of n digits, the r's complement of N is defined as,

$$(r^n - N)$$

- For example,
 - The 10's complement of $(52520)_{10}$ is $10^5-52520=47480$
 - Where n is number of digits in the Number.
 - The 10's complement of $(0.3267)_{10}$ is 1-0.3267=0.6733
 - No inter part so 10ⁿ =10⁰=1
 - The 10's complement of $(25.639)_{10}$ is 10^2 -25.639=74.631

- The r's Complements
 - For example,
 - The 2's complement of $(101110)_2$ is $(2^6)_{10} (101100)_2$ = $(1000000 - 101100)_2 = 010100$
 - The 2's complement of $(0.0110)_2$ is $(1 0.0110)_2 = 0.1010$
 - The 10's complement of $(25.639)_{10}$ is $10^2-25.639=74.631$
 - Note: 2's complement = (1's complement) + 1

Example: Find the 2's complement of 10110010.

 $(10110010)_2$

 $(01001101)_2$

+1

 $(01001110)_2$

Binary number

1's complement

Add 1

2's complement

The 10's complement of 012398 is 987602.

The 10's complement of 246700 is 753300.

Change all bits to the left of the least significant 1 to get 2's complement.

The 2's complement of 1101100 is 0010100.

The 2's complement of 0110111 is 1001001.

Simple Observations

- 10's Complement of a number can be formed by leaving all least significant zeros unchanged, subtracting the first non zero least significant digit from 10, and then subtracting rest of the digits from 9.
- The 2's complement can be formed by leaving all least significant zeros and the first nonzero digit unchanged, and then replacing 1 by 0's and 0's by 1's in all other higher significant digits.

Etc.

The (r-1)'s Complement

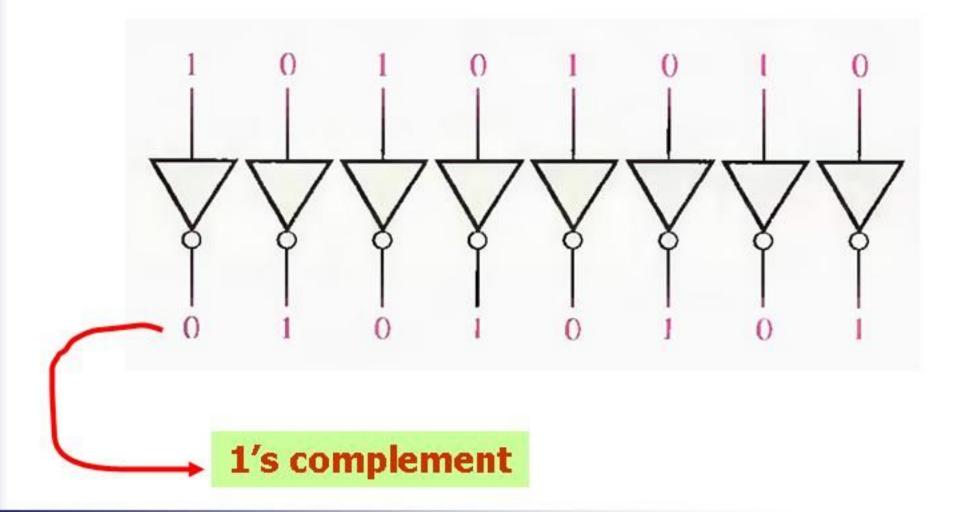
- Given a positive number N with an integer part of n digits and a fraction part of m digits,
- the (r-1)'s complement of N is defined as,

$$(r^n-r^{-m}-N)$$

- For example,
 - The 9's complement of $(52520)_{10}$ is $(10^5-1-52520)=47479$
 - No fraction part, so 10^{-m} = 10⁰ = 1
 - The 9's complement of $(0.3267)_{10}$ is $(1-10^{-4}-0.3267)$ = 0.9999-0.3267=0.6732
 - No inter part so 10ⁿ =10⁰=1
 - The 9's complement of $(25.639)_{10}$ is $(10^2 10^{-3} 25.639)$ = 99.999-25.639 = 74.360

- The (r-1)'s Complement
 - For example,
 - The 1's complement of $(101110)_2$ is $(2^6-1) (101100)_2$ = $(111111 - 101100)_2 = 010011$
 - The 1's complement of $(0.0110)_2$ is $(1-2^{-4})10 0.0110)_2$ =(0.1111 - 0.0110) = 0.1001
- We see from the above example that the 9's complement of a number is formed simply subtracting every digit from 9.
- 1's complement of a binary is formed by simply changing the bits from 1 to 0 and 0 to 1.

The simplest way to obtain the I's complement of a binary number with a digital circuit is to use parallel inverters (NOT circuits),



- Subtraction of two +ive number (M-N) both of base r may be done as follows,
 - Add the Minuend M to the r's complement of the subtrahend N.
 - $M + (r^n N) = M N + r^n$
 - Inspect the result obtained in step 1 for an end carry:
 - If an end carry occurs, discard it.
 - If an end carry does not occur, take the r's comp. of the number obtained in step 1 and place a —ive sign in front of it.

Example: Using 10's comp. subtract 72532-3250.

M = 72532

N = 03250

$$M = 72532$$
10's complement of $N = + 96750$
Sum = 169282

End Carry
Discard It

Answer = 69282

Example: Using 10's comp. subtract (3250 - 72532).

M = 03250

N = 72532

$$M = 03250$$

10's complement of
$$N = \frac{27468}{}$$

$$Sum = 30718$$

No End Carry

So Answer = -(10's complement of 30718)

= -69282


```
Example: Using 2's comp. subtract (1010100 – 1000100)
```

```
M = 1010100
```

$$N = 1000100$$

$$M = 1010100$$

2's complement of N =+0111100

End Carry → 1

0010000

So Answer = 10000


```
Example: Using 2's comp. subtract (1010100 – 1000100)

M = 1000100
```

N = 1010100

M = 1000100

2's complement of N =+0101100

No Carry

1110000

So Answer = -(2's complement of 1110000) =-(10000)

Examples

Given the two binary numbers X = 1010100 and Y = 1000011

Perform X – Y and Y-X using 2's complement

SOLUTION

$$X = 1010100$$

2's complement of
$$Y = + 0111101$$

$$Sum = 10010001$$

Discard End Carry

Answer: X - Y = 0010001

Examples

Now Performing Y - X

SOLUTION

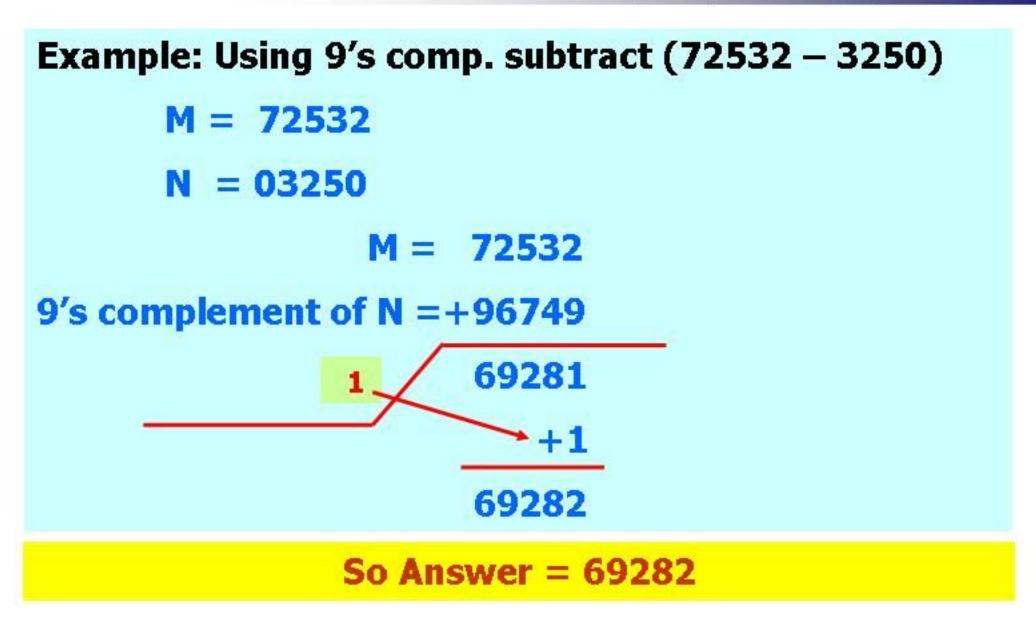
$$Y = 1000011$$

2's complement of $X = + 0101100$
Sum = 1101111

There is no end carry.

Answer: Y - X = -(2)'s complement of 11011111 = -0010001

- Subtraction with (r-1)'s complement
- Subtraction of two +ive number (M-N) both of base r may be done as follows,
 - Add the Minuend M to the (r-1)'s complement of the subtrahend N.
 - Inspect the result obtained in step 1 for an end carry:
 - If an end carry occurs, add 1 to least significant digit.
 - If an end carry does not occur, take the (r-1)'s comp.
 of the number obtained in step 1 and place a -ive
 sign in front of it.



Example: Using 9's comp. subtract (3250 - 72532)

M = 03250

N = 72532

M = 03250

9's complement of N = +27467

No End Carry

30717

So Answer = -(9's complement of 30717) =- 69282

Example: Using 1's comp. subtract (1010100 - 1000100) M = 1010100N = 1000100M = 10101001's complement of N = +01110110001111 0010000

So Answer = 10000

Example: Using 1's comp. subtract (1000100 - 1010100)

M = 1000100

N = 1010100

M = 1000100

1's complement of N = +0101011

No End Carry

1101111

So Answer = -(1's complement of 1101111) =- 10000

Examples

(a)
$$X - Y = 1010100 - 1000011$$

SOLUTION

Example

(b)
$$Y - X = 1000011 - 1010100$$

SOLUTION

$$Y = 1000011$$
1's complement of $X = + 0101011$
Sum = 1101110

There is no end carry.

Answer: Y - X = -(1)'s complement of 1101110) = -0010001

Signed Binary Numbers

- +ive integers including zero can be represented as a unsigned number.
- For representing –ive numbers we need a notation for –ive values.
- Due to H/W limitation computers must represent every thing in binary forms.
- To do this sign is represented by a bit which is at the left most position of the number.
- Sign bit 0 for +ive and 1 for -ive is used.

Signed binary numbers

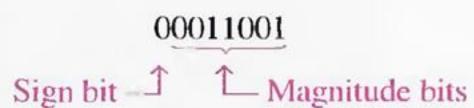
- Both signed and unsigned numbers consists of string of bits.
- The user determines whether the number is signed or unsigned, the left most bit is the signed bit but rest of the bits represent the number.
- If the number is assumed to be unsigned, then the left most bit of the number is most significant bit of the number.

Signed binary numbers

- For example 01001 is 9 in decimal (unsigned number) or +9 (signed binary) b/c the left most bit is 0.
- The string of bit 11001 is 25 in decimal when considered it as unsigned.
- -9 when considered as a signed b/c of the 1 in the left most position, which shows –ive. Other 4bits shows the binary number.
- This whole is called the singed magnitude convention.

Signed binary number

 In this convention a number has magnitude and a symbol (+ or -) or a bit (0, 1).



- -25 is represented as 10011001
- This is used in ordinary arithmetic.
- When representing it in computer, a different technique is used called,
- signed complement system.
 - in this system a –ive is represented by its complement.
- 2's complements is used to do the operation.
- Consider 9 in binary with 8bits,
 - +9 is represented with 0 bit in left most position followed by binary equalivant of 9 which is 00001001.

Signed binary numbers

There are three different ways to represent -9 with eight bits.

In signed-magnitude representation: 10001001

In signed-1's-complement representation: 11110110

In signed-2's-complement representation: 11110111

Signed binary numbers

- In signed magnitude -9 is obtained from +9 by changing the sign bit from 0 to 1.
- In signed compl. System -9 is obtained by taking the complement of all the bits of +9 including the sign bit.

```
+9 → 00001001
-9 → 11110111 (2,s Complement of +9)
```


Arithmetic addition

- The addition of two signed binary numbers with

 ive numbers represented in signed 2,s
 complement form is obtained from the addition of the two numbers, including their sign bits.
- Carry is discarded of the sign bit position.

Arithmetic addition

 -ive numbers are initially in 2's complement and that the sum obtained after the addition if –ive is in 2's complement form.

+ 6	00000110	- 6	11111010
+13	00001101	+13	00001101
+19	00010011	+ 7	00000111
+ 6	00000110	- 6	11111010
-13	11110011	<u>-13</u>	11110011
<u> </u>	11111001	-19	11101101

