

Combinational Logic

Department of Computer Science

DCS

Rab Naway Khan Gadoon

Lecturer
COMSATS Lahore
Pakistan

COMSATS Institute of Information Technology

Combinational logic

- Design Procedures
- Starts from the verbal outline of the problem and ends in a logic circuit diagram.
- The procedure involves the following step,
- The problem is stated.
- Input and required output variables are determined.
- Assigned the variables letter symbols.
- Make the truth table.
- The simplified Boolean functions for each output is obtained.
- The logic diagram is drawn.

Decoder

Decoder

- A decoder is a digital circuit that detects the presence of a specified combination of bits (code) on its inputs and indicates the presence of that code by a specified output level.
- A decoder has n input lines to handle n bits and from one to 2^{n} output lines to indicate the presence of one or more n-bit combinations. Or
- It is a combinational circuit that converts binary information from n input lines to a maximum of 2^{n} unique output lines
- Suppose you need to determine when a binary 1001 occurs on the inputs of a digital circuit.

Decoder

- An AND gate can be used as the basic decoding element because it produces a HIGH output only when all of its inputs are HIGH.
- Decoding is necessary in applications such as data multiplexing, 7 segment display and memory address decoding.
- A decoder that contains enable inputs is also known as a decoder-demultiplexer.
- A decoder is a device which does the reverse of an encoder, undoing the encoding so that the original information can be retrieved.

Decoder

Therefore, you must make sure that all of the inputs to the AND gate are HIGH when the binary number 1001 occurs.

- this can be done by inverting the two middle bits (the Os), as shown in Figure,

2 to 4 line single bit decoder

Truth Table					
A_{1}	$\mathrm{~A}_{0}$	D_{3}	D_{2}	D_{1}	D_{0}
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

Minterm Equations

$$
\begin{aligned}
& \mathrm{D}_{0}=\overline{\mathrm{A}_{1}} \cdot \overline{\mathrm{~A}_{0}} \\
& \mathrm{D}_{1}-\overline{\mathrm{A}_{1}} \cdot \mathrm{~A}_{0} \\
& \mathrm{D}_{2}=\mathrm{A}_{1} \cdot \overline{\mathrm{~A}_{0}} \\
& \mathrm{D}_{3}=\mathrm{A}_{1} \cdot \mathrm{~A}_{0}
\end{aligned}
$$

Decoder

- The 4-Bit Decoder

- In order to decode all possible combinations of four bits, sixteen decoding gates are required $\left(2^{4}=16\right)$.
- This type of decoder is commonly called either a 4-line-to-16-line decoder because there are four inputs and sixteen outputs.
- 1-of-16 decoder because for any given code on the inputs, one of the sixteen outputs is activated.
- A list of the sixteen binary codes and their corresponding decoding functions is given in Table on next slide.

Decoder

DECIMAL DIGIT	BINARY INPUTS				DECODING FUNCTION	0	1	2	3	4	5	6	OUTPUTS				11	12	13	14	15
	A_{3}	A_{2}	A_{1}	A_{0}									7	8	9	10					
0	0	0	0	0	$\bar{A}_{3} \bar{A}_{2} \bar{A}_{1} \bar{A}_{0}$	0	1	1	1	I	1	1	1	1	1	1	1	1	1	1	1
1	0	0	0	1	$\bar{A}_{3} \bar{A}_{2} \bar{A}_{1} A_{0}$	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	0	0	1	0	$\bar{A}_{3} \bar{A}_{2} A_{1} \bar{A}_{0}$	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1
3	0	0	1	1	$\bar{A}_{3} \bar{A}_{2} A_{1} A_{0}$	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1
4	0	1	0	0	$\bar{A}_{3} A_{2} \bar{A}_{1} \bar{A}_{0}$	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1
5	0	1	0	1	$\bar{A}_{3} A_{2} \bar{A}_{1} A_{0}$	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1
6	0	1	1	0	$\bar{A}_{3} A_{2} A_{1} \bar{A}_{0}$	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1
7	0	1	1	1	$\bar{A}_{3} A_{2} A_{1} A_{0}$	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1
8	1	0	0	0	$A_{3} \bar{A}_{2} \bar{A}_{1} \bar{A}_{0}$	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1
9	1	0	0	1	$A_{3} \bar{A}_{2} \bar{A}_{1} A_{0}$	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1
10	1	0	1	0	$A_{3} \bar{A}_{2} A_{1} \bar{A}_{0}$	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1
11	1	0	1	1	$A_{3} \bar{A}_{2} A_{1} A_{0}$	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1
12	1	1	0	0	$A_{3} A_{2} \bar{A}_{1} \bar{A}_{0}$	1	1	1	1	1	1	1	1	1	I	1	1	0	1	1	1
13	1	1	0	1	$A_{3} A_{2} \bar{A}_{1} A_{0}$	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1
14	1	1	1	0	$A_{3} A_{2} A_{1} \bar{A}_{0}$	1	1	1	1	I	1	1	1	1	1	1	1	1	1	0	1
15	1	I	1	1	$A_{3} A_{2} A_{1} A_{0}$	1	1	1	1	1	1	1	1	1	1	1	I	1	1	1	0

Decoder

- A logic symbol for a 4-line-to-16-1ine (1-of-16) decoder.
- The BIN/DEC label indicates that a binary input makes the corresponding decimal output active.
- The input labels 8, 4, 2, and I represent the binary weights of the input bits ($2^{3} 2^{2} 2^{1} 2^{\circ}$).
- Decoder element if AND,
- Output is Active High output
- Decoder element, if NAND
- Output is active low output

Decoder

- The BCD-to-Decimal Decoder
- The BCD-to-decimal decoder converts each BCD code (8421 code) into one of ten possible decimal digit indications.
- Only ten decoding gates are required because the BCD code represents only the ten decimal digits 0 through 9.
- A list of the ten BCD codes and their corresponding decoding functions is given in Table on the next slide,

Decoder

DECIMAL	BCD CODE				DECODING
DIGIT	A_{3}	A_{2}	A_{1}	A_{0}	FUNCTION
0	0	0	0	0	$\bar{A}_{3} \bar{A}_{2} \bar{A}_{1} \bar{A}_{0}$
1	0	0	0	1	$\bar{A}_{3} \bar{A}_{2} \bar{A}_{1} A_{0}$
2	0	0	1	0	$\bar{A}_{3} \bar{A}_{2} A_{1} \bar{A}_{0}$
3	0	0	1	1	$\bar{A}_{3} \bar{A}_{2} A_{1} A_{0}$
4	0	1	0	0	$\bar{A}_{3} A_{2} \bar{A}_{1} \bar{A}_{0}$
5	0	1	0	1	$\bar{A}_{3} A_{2} \bar{A}_{1} A_{0}$
6	0	1	1	0	$\bar{A}_{3} A_{2} A_{1} \bar{A}_{0}$
7	0	1	1	1	$\bar{A}_{3} A_{2} A_{1} A_{0}$
8	1	0	0	0	$A_{3} \bar{A}_{2} \bar{A}_{1} \bar{A}_{0}$
9	1	0	0	1	$A_{3} \bar{A}_{2} \bar{A}_{1} A_{0}$

Decoder

3 to 8 line Decoder

Decoder

Inputs			D_{0}	D_{1}	D_{2}		$\begin{aligned} & \text { uts } \\ & D_{4} \\ & \hline \end{aligned}$	D_{5}	D_{6}	D_{7}
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Combinational Logic Implementation

- The procedure for implementing a combinational circuit by means of a decoder and OR Gates requires that the boolean functions for the circuit be expressed in SOP.
- This form can easily be obtained from the truth table.
- A decoder is then chosen that generates all the minterms of the n input variables.
- The inputs to each OR gate are selected from the decoder outputs according to the minterm list in each function.

Decoder

- Problem:
- Implement a full adder circuit with a decoder and two OR gates.
- Solution:
- From the truth table of full adder,

$$
\begin{gathered}
S(x, y, z)=\Sigma(1,2,4,7) \\
C(x, y, z)=\Sigma(3,5,6,7)
\end{gathered}
$$

- Since there are three inputs and a total of eight minterms, we need a 3 to 8 line decoder.

Implementation of a full adder with a decoder

The decoder method can be used to implement any combination Circuit. However its implementation must be compared with all others Possible implementation to determine the best solution.

Encoder

- An encoder is a combinational logic circuit that essentially performs a "reverse" decoder.
- An encoder accepts an active level on one of its inputs representing a digit, such as a decimal or octal digit, and converts it to a coded output, such as BCD or binary.

The Decimal-to-BCD Encoder

This type of encoder has ten inputs-one for each decimal digit-and four outputs corresponding to the BCD code, as shown in Figure below,

The BCD (8421) code

	$B C D C O D E$			
DECIMAL DIGIT	A_{3}	A_{2}	A_{1}	A_{0}
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1

The Decimal-to-BCD Encoder

- From this table you can determine the relationship between each BCD bit and the decimal digits in order to analyze the logic.
- For instance, the most significant bit of the BCD code, A_{3}, is always a 1 for decimal digit 8 or 9 .
- An OR expression for bit A_{3} in terms of the decimal digits can therefore be written as,
- $\mathrm{A}_{3}=8+9$
- Bit A_{2} is always a I for decimal digit 4, 5, 6 or 7 and can be expressed as an OR function as follows:
- $A_{2}=4+5+6+7$

The Decimal-to-BCD Encoder

- Bit A_{1} is always a 1 for decimal digit $2,3,6$, or 7 and can be expressed as
- $A_{1}=2+3+6+7$
$■$ Finally. A_{0} is always a1 for decimal digit 1. 3. 5. 7. or 9. The expression for A_{0} is
- $A_{0}=1+3+5+7+9$
- Now let's implement the logic circuitry required for encoding each decimal digit to a BCD code by using the logic expressions just developed.
- It is simply a matter of ORing the appropriate decimal digit input lines to form each BCD output.

The Decimal-to-BCD Encoder

The Decimal-to-BCD Encoder

- When a HIGH appears on one of the decimal digit input lines, the appropriate levels occur on the four BCD output lines.
- For instance, if input line 9 is HIGH (assuming all other input lines are LOW), this condition will produce a HIGH on outputs A_{0} and A_{3} and LOWs on outputs A_{1} and A_{2}, which is the BCD code (1001) for decimal 9.

Department of Computer Science

