

Combinational Logic

Rab Nawaz Khan Jadoon

Department of Computer Science

DCS

COMSATS Institute of Information Technology Lecturer COMSATS Lahore

Pakistan

Digital Logic and Computer Design

Combinational logic

Design Procedures

- Starts from the verbal outline of the problem and ends in a logic circuit diagram.
- The procedure involves the following step,
 - The problem is stated.
 - Input and required output variables are determined.
 - Assigned the variables letter symbols.
 - Make the truth table.
 - The simplified Boolean functions for each output is obtained.
 - The logic diagram is drawn.

Decoder

- A decoder is a digital circuit that detects the presence of a specified combination of bits (code) on its inputs and indicates the presence of that code by a specified output level.
 - A decoder has n input lines to handle n bits and from one to 2ⁿ output lines to indicate the presence of one or more n-bit combinations. Or
 - It is a combinational circuit that converts binary information from n input lines to a maximum of 2ⁿ unique output lines
 - Suppose you need to determine when a binary 1001 occurs on the inputs of a digital circuit.

- An AND gate can be used as the basic decoding element because it produces a HIGH output only when all of its inputs are HIGH.
- Decoding is necessary in applications such as data multiplexing, 7 segment display and memory address decoding.
- A decoder that contains enable inputs is also known as a decoder-demultiplexer.
- A decoder is a device which does the reverse of an encoder, undoing the encoding so that the original information can be retrieved.

- Therefore, you must make sure that all of the inputs to the AND gate are HIGH when the binary number 1001 occurs.
- this can be done by inverting the two middle bits (the Os), as shown in Figure,

2 to 4 line single bit decoder

The 4-Bit Decoder

- In order to decode all possible combinations of four bits, sixteen decoding gates are required (2⁴ = 16).
- This type of decoder is commonly called either a 4line-to-16-line decoder because there are four inputs and sixteen outputs.
- 1-of-16 decoder because for any given code on the inputs, one of the sixteen outputs is activated.
- A list of the sixteen binary codes and their corresponding decoding functions is given in Table on next slide.

Decoder

DECIMAL BINARY INPUTS			DECODING	1	OUTPUTS									and a							
DIGIT	A ₃	A ₂	<i>A</i> ₁	Ao	FUNCTION	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0	0	0	$\overline{A}_3\overline{A}_2\overline{A}_1\overline{A}_0$	0	1	1	1	l	1	1	1	1	1	1	1	1	1	1	1
1	0	0	0	1	$\overline{A}_3\overline{A}_2\overline{A}_1A_0$	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	0	0	- 1	0	$\overline{A}_3\overline{A}_2A_1\overline{A}_0$	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1
3	0	0	1	1	$\overline{A}_3\overline{A}_2A_1A_0$	1	1	1	0	1	1-	1	1	1	1	1	1	1	1	1	1
4	0	1	0	0	$\overline{A}_3 A_2 \overline{A}_1 \overline{A}_0$	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1
5	0	1	0	1	$\overline{A}_{3}A_{2}\overline{A}_{1}A_{0}$	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1
6	0	1	1	0	$\overline{A}_{3}A_{2}A_{1}\overline{A}_{0}$	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1
7	0	1	1	1	$\overline{A}_{3}A_{2}A_{1}A_{0}$	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1
8	1	0	0	0	$A_3\overline{A}_2\overline{A}_1\overline{A}_0$	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1
9	1	0	0	1	$A_3\overline{A}_2\overline{A}_1A_0$	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1
10	1	0	1	0	$A_3\overline{A}_2A_1\overline{A}_0$	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1
11	1	0	1	1	$A_3\overline{A}_2A_1A_0$	1	1	1	1	1	1	1	1	l	l	1	0	1	1	1	1
12	1	1	0	0	$A_3 A_2 \overline{A}_1 \overline{A}_0$	1	1	1	1	1	1	1	1	1	l	1	1	0	1	1	1
13	1	1	0	1	$A_3 A_2 \overline{A}_1 A_0$	1	1	1	1	1	1	1	1	1	1	1	1	1	0	l	1
14	1	1	1	0	$A_3 A_2 A_1 \overline{A}_0$	1	1	l	1	1	1	1	1	1	1	1	1	1	1	0	1
15	1	l	1	1	$A_3A_2A_1A_0$	1	1	1	1	1	1	1	1	1	1	1	l	1	1	1	0

- A logic symbol for a 4-line-to-16-1ine (1of-16) decoder.
 - The BIN/DEC label indicates that a binary input makes the corresponding decimal output active.
 - The input labels 8, 4, 2, and I represent the binary weights of the input bits (2³ 2² 2¹ 2^o).
 - Decoder element if AND,
 - Output is Active High output
 - Decoder element, if NAND
 - Output is active low output

The BCD-to-Decimal Decoder

- The BCD-to-decimal decoder converts each BCD code (8421 code) into one of ten possible decimal digit indications.
- Only ten decoding gates are required because the BCD code represents only the ten decimal digits 0 through 9.
- A list of the ten BCD codes and their corresponding decoding functions is given in Table on the next slide,

DECIMAL		BCDC	DECODING		
DIGIT	A ₃	A ₂	<i>A</i> ₁	A ₀	FUNCTION
0	0	0	0	0	$\overline{A}_3\overline{A}_2\overline{A}_1\overline{A}_0$
1	0	0	0	1	$\overline{A}_{3}\overline{A}_{2}\overline{A}_{1}A_{0}$
2	0	0	1	0	$\overline{A}_3\overline{A}_2A_1\overline{A}_0$
3	0	0	1	1	$\overline{A}_{3}\overline{A}_{2}A_{1}A_{0}$
4	0	1	0	0	$\overline{A}_{3}A_{2}\overline{A}_{1}\overline{A}_{0}$
5	0	1	0	1	$\overline{A}_{3}A_{2}\overline{A}_{1}A_{0}$
6	0	1	1	0	$\overline{A}_{3}A_{2}A_{1}\overline{A}_{0}$
7	0	1	1	1	$\overline{A}_{3}A_{2}A_{1}A_{0}$
8	1	0	0	0	$A_3\overline{A}_2\overline{A}_1\overline{A}_0$
9	1	0	0	1	$A_3\overline{A}_2\overline{A}_1A_0$

COMSATS

Tru	Truth Table of a 3-to-8-Line Decoder										
	Inputs					Out	puts				
<u>x</u>	y	Z	D _c		Dz	D_3	D_4	D ₅	D ₆	D_7	
0	0	0	1	0	0	0	0	0	0	0	
0	D	1	0	1	0	0	0	0	0	0	
0	1	0	0	0	1	0	0	0	0	0	
0	1	1	0	0	0	1	0	0	0	0	
1	0	0	0	0	0	0	1	0	0	0	
1	0	1	0	0	0	0	0	1	0	0	
1	1	0	0	0	0	0	0	0	1	0	
1	1	1	0	0	0	0	0	0	0	1	

Combinational Logic Implementation

The procedure for implementing a combinational circuit by means of a decoder and OR Gates requires that the boolean functions for the circuit be expressed in SOP.

- This form can easily be obtained from the truth table.
- A decoder is then chosen that generates all the minterms of the n input variables.
- The inputs to each OR gate are selected from the decoder outputs according to the minterm list in each function.

Problem:

Implement a full adder circuit with a decoder and two OR gates.

Solution:

From the truth table of full adder,

$$S(x, y, z) = \Sigma(1, 2, 4, 7)$$

$$C(x, y, z) = \Sigma(3, 5, 6, 7)$$

Since there are three inputs and a total of eight minterms, we need a 3 to 8 line decoder.

Implementation of a full adder with a decoder

The decoder method can be used to implement any combination Circuit. However its implementation must be compared with all others Possible implementation to determine the best solution.

- An encoder is a combinational logic circuit that essentially performs a "reverse" decoder.
 - An encoder accepts an active level on one of its inputs representing a digit, such as a decimal or octal digit, and converts it to a coded output, such as BCD or binary.

 This type of encoder has ten inputs-one for each decimal digit-and four outputs corresponding to the BCD code, as shown in Figure below,

		BCD	CODE	
DECIMAL DIGIT	A ₃	A ₂	A ₁	A ₀
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1

- From this table you can determine the relationship between each BCD bit and the decimal digits in order to analyze the logic.
 - For instance, the most significant bit of the BCD code, A₃, is always a 1 for decimal digit 8 or 9.
 - An OR expression for bit A₃ in terms of the decimal digits can therefore be written as,
 - $A_3 = 8 + 9$
 - Bit A₂ is always a I for decimal digit 4, 5, 6 or 7 and can be expressed as an OR function as follows:

- Bit A₁ is always a 1 for decimal digit 2, 3, 6, or 7 and can be expressed as
- $\bullet A_1 = 2 + 3 + 6 + 7$
- Finally. A₀ is always a1 for decimal digit 1. 3. 5. 7. or
 9. The expression for A₀ is
- A₀=1+3+5+7+9
- Now let's implement the logic circuitry required for encoding each decimal digit to a BCD code by using the logic expressions just developed.
- It is simply a matter of ORing the appropriate decimal digit input lines to form each BCD output.

- When a HIGH appears on one of the decimal digit input lines, the appropriate levels occur on the four BCD output lines.
 - For instance, if input line 9 is HIGH (assuming all other input lines are LOW), this condition will produce a HIGH on outputs A₀ and A₃ and LOWs on outputs A₁ and A₂, which is the BCD code (1001) for decimal 9.

