

Karnaugh Maps Simplification

Lecturer
COMSATS Lahore
Pakistan

Department of Computer Science

DCS

COMSATS Institute of Information Technology

K-Map Simplification

- After an SOP expression has been mapped, a minimum SOP expression is obtained by grouping the Is and determining the minimum SOP expression from the map.
- You can group Is on the Karnaugh map according to the following rules by enclosing those adjacent cells containing 1 s .
- The goal is to maximize the size of the groups and to minimize the number of groups.

K-Maps

- Karnaugh map is an array of cells in which each cell represents a binary value of the input variables.
- The cells are managed in a way so that simplification of a given expression is simply a matter of properly grouping the cells.
- Karnaugh maps can be used for expressions with two, three, four. and five variables, but we will discuss only 3 -variable and 4 -variable situations to illustrate the principles.

K-Maps

- Steps for Grouping
- A group must contain either 1, 2, 4, 8, or 16 cells, which are all powers of two. In the case of a 3variable map, $2^{3}=8$ cells is the maximum group.
- Each cell in a group must be adjacent to one or more cells in that same group. but all cells in the group do not have to be adjacent to each other.
- Always include the largest possible number of 1's in a group in accordance with rule 1.
- Each 1 on the map must be included in at least one group. The Is already in a group can be included in another group as long as the overlapping groups include noncommon 1's.

For Example

Example

Wrap around adjacency

K-Maps

$A B{ }^{C}$	00	01	11	10
00	1	1		
01	1	1	1	1
11				
10		1	1	

K-Maps

Wrap around adjacency

- Determining the Minimum SOP Expression from the Map.
- When all the 1's representing the standard product terms in an expression are properly mapped and grouped, the process of determining the resulting minimum SOP expression begins.
- Rules
- Group the cells that have 1's. Each group of cells containing I s creates one product term composed of all variables that occur in either form within the group.
- Variables that occur both uncomplemented and complemented within the group are eliminated. These are called contradictory variables.

The 4-Variable Karnaugh Map

- Determining the minimum term for each group

- For a 3-veriable map.
(1) A 1-cell group yields a 3-variable product term
(2) A 2-cell group yields a 2 -variable product term
(3) A 4-cell group yields a 1-variable term
(4) An $\mathbf{8}$-cell group yields a value of $\mathbf{1}$ for the expression

■ For a 4-veriable map
(1) A 1-cell group yields a 4-variable product term
(2) A 2-cell group yields a 3-variable product term
(3) A 4-cell group yields a 2 -variable product term
(4) An 8-cell group yields a 1 -variable term
(5) A 16-cell group yields a value of 1 for the expression

Note: When all the minimum product terms are derived from the Karnaugh map, they are summed to form the minimum SOP expression.

Related Example

Minimize the following SOP expression,

$$
\begin{array}{lll}
F(x, y, z)=\Sigma(0,2,6,7) & \rightarrow & 1 \\
F(x, y, z)=\Sigma(0,2,3,4,6) & \rightarrow & 2 \\
F(x, y, z)=\Sigma(0,1,2,3,7) & \rightarrow & 3 \\
F(x, y, z)=\Sigma(3,5,6,7) & \rightarrow & 4 \\
F(x, y, z)=\Sigma(0,1,5,7) & \rightarrow & 5 \\
F(x, y, z)=\Sigma(0,1,6,7) & \rightarrow & 6 \\
F(x, y, z)=\Sigma(1,2,3,6,7) & \rightarrow & 7
\end{array}
$$

Solution

Solution

$\square \mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma(0,2,6,7) \quad \rightarrow \quad 1$

$$
F=x y+x^{\prime} z^{\prime}
$$

Solutions

- Solution

$$
F(x, y, z)=\Sigma(0,2,3,4,6) \quad \rightarrow \quad 2
$$

Solution

- Solution

$$
F(x, y, z)=\Sigma(0,1,2,3,7) \quad \rightarrow \quad 3
$$

Solution

- Solution

$$
F(x, y, z)=\Sigma(3,5,6,7) \quad \Rightarrow \quad 4
$$

Solution of 5, 6, 7

5. $F=x^{z} y^{\prime}+x z$

6. $F=x^{z} y^{\prime}+x y$

$$
\text { 7. } F=y+x^{\prime} z
$$

Department of Computer Science

K-Maps

- Example

- Determine the product terms for the Karnaugh map given and write the resulting minimum SOP expression?

K-Maps

- Solution

The resulting minimum SOP expression is, $B+A^{\prime} C+A C^{\prime} D$ the sum of these product terms:

Self Assessment

Problem: For the Karnaugh map on the previous slide, add a 1 in the lower right cell (1010) and determine the resulting SOP expression.

Example 1

Department of Computer Science

Example 2

Solution

- The resultant SOP expression against a, b, c and d are,
a. $A B+B C+A^{\prime} B^{\prime} C^{\prime}$
b. $A^{\prime} B+A^{\prime} C^{\prime}+A B^{\prime} D$
c. $B^{\prime}+A^{\prime} C^{\prime}+A C$
d. $D^{\prime}+A B^{\prime} C+B C^{\prime}$

Class Assignment

- Using k-map simplify the following expression, $F(A, B, C, D)=\Sigma(0,2,3,4,6,8,10,11,12,14)$ Just do it in 3min. Only.

The resulting minimum SOP expression is

$$
D^{\prime}+B^{\prime} C
$$

Examples

Find the minimized SOP expression against the following,

1. $F(A, B, C, D)=\Sigma(4,6,7,15)$
2. $F(A, B, C, D)=\Sigma(3,7,11,13,14,15)$
3. $F(A, B, C, D)=\Sigma(0,1,5,8,9)$
4. $F(A, B, C, D)=\Sigma(1,4,5,6,12,14,15)$

Solutions

- Solution

1. $F(A, B, C, D)=\Sigma(4,6,7,15)$

solution

- Solution

2. $F(A, B, C, D)=\Sigma(3,7,11,13,14,15)$

Solutions

Solution

$$
\text { 3. } F(A, B, C, D)=\Sigma(0,1,5,8,9)
$$

Solutions

- Solution

$$
\text { 4. } F(A, B, C, D)=\Sigma(1,4,5,6,12,14,15)
$$

Assignment\# 2

Simplify the following SOP Expression,

1. $F(A, B, C, D)=\Sigma(1,2,3,5,7,9,10,11,13,15)$
2. $F(A, B, C, D)=\Sigma(1,2,3,5,9,10,11,12,13)$
3. $F(A, B, C, D)=\Sigma(0,2,3,5,7,8,10,11,14,15)$
4. $F(A, B, C, D)=\Sigma(2,3,7,10,11,12,13,14,15)$
5. $F(A, B, C, D)=\Sigma(1,3,5,9,12,13,14)$
6. $F(A, B, C, D)=\Sigma(0,2,4,5,6,7,8,10,13,15)$

Due date: Next Incoming Class
No Copy/Past Material should be,

NAND and NOR Implementation

NOR Equivalent

NAND Implementation

$F=A B+C D+E$

AND-OR

NAND-NAND

NAND implementation

- Implement the following function using NAND,

$$
F(x, y, z)=\Sigma(0,6)
$$

$\mathrm{x} \mathrm{y}^{\mathbf{z}}$	00	01	11	10
0	1	0	0	0
1	0	0	0	1

$$
\begin{aligned}
& F=x^{\prime} y^{\prime} z^{\prime}+x y z^{\prime} \\
& F^{\prime}=x^{\prime} y+x y^{\prime}+z
\end{aligned}
$$

Cont...

NOR Implementation

- Taking the function and expand it using demorgan theorem we, get,
$\square F^{\prime}=x^{\prime} y+x y^{\prime}+z$
- $F=\left(x+y^{\prime}\right)\left(x^{\prime}+y\right) z^{\prime}$

AND-OR-INVERT Implementation

- Let the function is
- $\mathrm{F}=(\mathrm{AB}+\mathrm{CD}+\mathrm{E})^{\prime}$

AND-NOR

OR-AND-Invert

- Let the function is
- $\mathrm{F}=[(\mathrm{A}+\mathrm{B})(\mathrm{C}+\mathrm{D}) \mathrm{E}]^{\prime}$

OR-NAND

DON'T care conditions

- Sometimes a situation arises in which some input variable combinations are not allowed. For example, recall that in the BCD code.
- There are six invalid combinations: 1010, 1011, $1100,1101,1110$, and 1111.
- Since these unallowed states will never occur in an application involving the BCD code, they can be treated as "don't care" terms with respect to their effect on the output.
- The "don't care" terms can be used to advantage on the Karnaugh map.

Cont...

- For each "don't care" term, an X is placed in the cell.
- When grouping the 1's, the X's can be treated as I s to make a larger grouping or as O's if they cannot be used to advantage.
The larger a group, the simpler the resulting term will be.

Inputs $A B C D$	Output Y
0000	0
0001	0
0010	0
0011	0
0100	0
0101	0
0110	0
0111	1
1000	1
1001	1
1010	X
1011	X
1100	X
1101	X
1110	X
1111	X

DON'T care conditions

- The truth table in Figure below describes a logic function that has a I output only when the BCD code for 7,8 , or 9 is present on the inputs. if the "don't cares" are used as Is, the resulting expression for the function is $A+B C D$.

Inputs	Output
$A B C D$	\boldsymbol{r}
0000	0
0001	0
0010	0
0011	0
0100	0
0101	0
0110	0
0111	1
1000	1
1001	1
1010	X
1011	x
1100	x
1101	x
1110	x
1111	X

Related Problem

- Simplify the Boolean functions
$F(w, x, y, z)=\Sigma(1.3 .7 .11 .15)$
Don't care conditions are, $d(w, x, y, z)=\Sigma(0.2 .5)$
Solution

$$
F=y z+w^{\prime} x^{\prime}
$$

Example

(b) $F=y z+w^{\prime} z$

Five veriable K map

- Boolean functions with five variables can be simplified using a 32-cell Karnaugh map.
- Actually, two 4 -variable maps (16 cells each) are used to construct a S-variable map.
- A Karnaugh map for five variables (ABCDE) can be constructed using two 4-variable maps with which you are already familiar.
- Each map contains 16 cells with all combinations of variables 8, C, D, and E.
- One map is for $\mathrm{A}=0$ and the other is for $\mathrm{A}=\mathrm{I}$, as shown on the next slide.

5 veriable K map

Cell Adjacency

- The best way to visualize cell adjacencies between the two 16 -cel1 maps is to imagine that the $\mathrm{A}=0 \mathrm{map}$ is placed on top of the $\mathrm{A}=$ 1 map.
- Each cell in the A = 0 map is adjacent to the cell directly below it in the $\mathrm{A}=1$ map.

Cell Adjacency

Each cell in the $\mathbf{A}=\mathbf{0}$ map is adjacent to the cell directly below it in the $A=I$ map.

5 variable K Map

- The simplified expression taken from the map is developed as follows
- The term for the yellow group is DE^{\prime}.

The term for the orange group is $\mathrm{B}^{\prime} \mathrm{CE}$.

- The term for the light red group is $\mathrm{A}^{\prime} \mathrm{BD}^{\prime}$.
- The term for the gray cell grouped with the red cell is $B C^{\prime} D^{\prime} E$.
The final SOP expression is,
- $X=D E^{\prime}+B^{\prime} C E+A^{\prime} B D^{\prime}+B C^{\prime} D^{\prime} E$

Example

Use a Karnaugh map to minimize the following standard SOP 5-variable expression:

$$
\begin{aligned}
X & =\bar{A} \bar{B} \bar{C} \bar{D} \bar{E}+\bar{A} \bar{B} C \bar{D} \bar{E}+\bar{A} B C \bar{D} \bar{E}+\bar{A} B \bar{C} \bar{D} \bar{E}+\bar{A} \bar{B} \bar{C} \bar{D} E+\bar{A} B C \bar{D} E \\
& +\bar{A} B C D E+A \bar{B} \bar{C} \bar{D} \bar{E}+A \bar{B} \overline{C D} \bar{D} E+A B C \bar{D} E+A B C D E+A \bar{B} C D E
\end{aligned}
$$

Cont...

- Final Simplified Expression is,

$$
X+\bar{A} \bar{D} \bar{E}+\bar{B} \bar{C} \bar{D}+B C E+A C D E
$$

