

Multiplexer and De-Multiplexer

Rab Nawaz Khan Jadoon

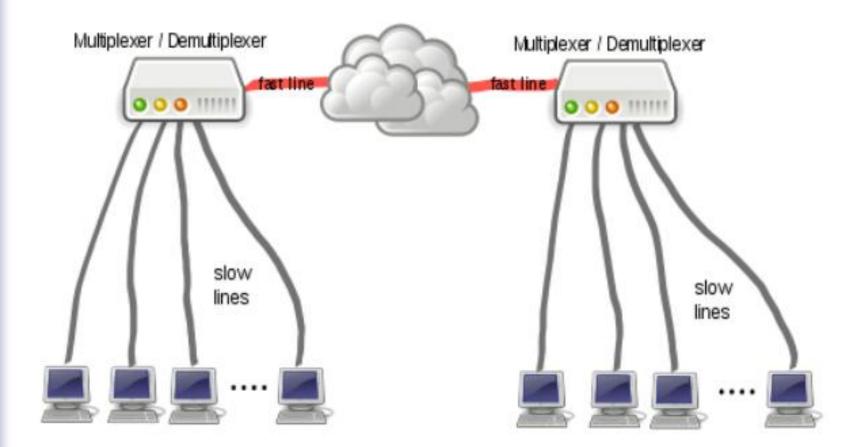
Department of Computer Science

DCS

COMSATS Institute of Information Technology Lecturer COMSATS Lahore Pakistan

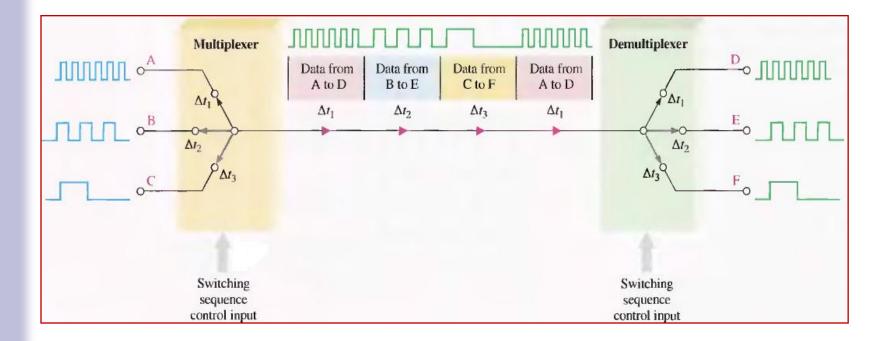
Digital Logic and Computer Design

- Two types of circuits that select data are the Multiplexer and the Demultiplexer.
- Multiplexer (MUX), switches digital data from several input lines onto a single output line in a specified time sequence.
- Multiplexer (MUX) can be represented by an electronic switch operation that sequentially connects each of the input lines to the output line.



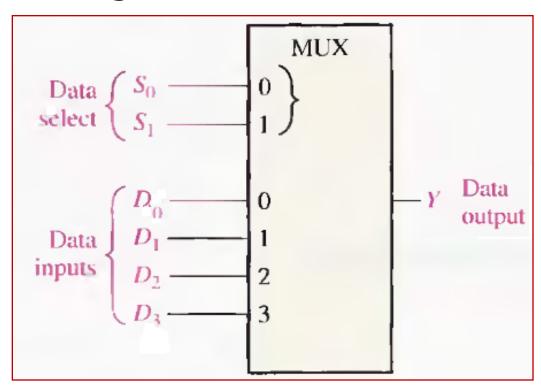
MUX and DeMUX

- The Demultiplexer (Demux) is a logic circuit that switches digital data from one input line to several output lines in a specified time sequence.
- Multiplexing and De-Multiplexing are used when data from several sources are to be transmitted over one line to a distant location and redistributed to several destinations.



MUX and DeMUX

MUX and De-MUX


Multiplexer

- A Multiplexer (MUX) is a device that allows digital information from several sources to be routed onto a single line for transmission over that line to a common destination.
- The basic multiplexer has several data-input lines and a single output line.
- It also has data-select inputs. which permit digital data on anyone of the inputs to be switched to the output line.

Multiplexers are also known as data selectors.

A logic symbol for a 4-input multiplexer (MUX) is shown in Figure,

Multiplexer

Multiplexer

there are two data-select lines because with two select bits. anyone of the four data-input
lines can be selected.

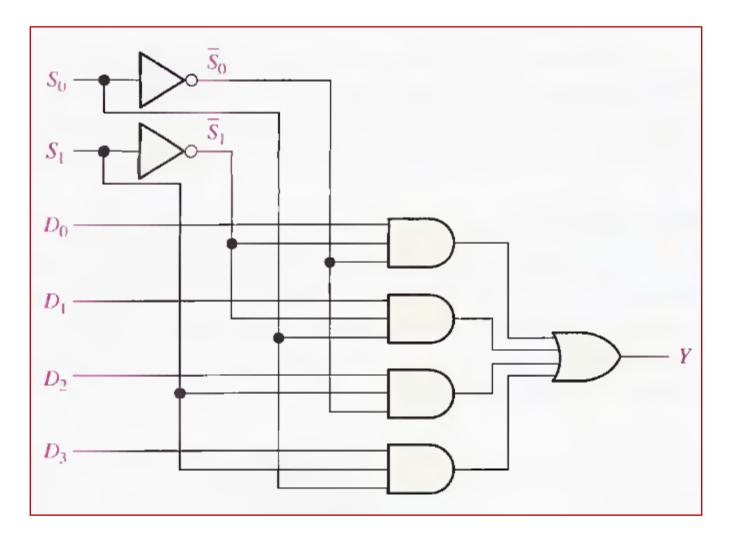
DATA-SEL				
S ₁	S ₀	INPUT SELECTED		
0	0	D_0		
0	1	D_1		
1	0	D_2		
1	1	D_3		

Logic Circuitry

- The data output is equal to the state of the selected data input.
 - You can therefore, derive a logic expression for the output in terms of the data input and the select inputs.

Data output	S ₁	S ₀	Υ
D ₀	0	0	$D_0 S'_1 S'_0$
D_1	0	1	$D_1 S'_1 S_0$
D ₂	1	0	$D_2 S_1 S_0'$
D ₃	1	1	$D_3 S_1 S_0$

 $Y = D_0 S'_1 S'_0 + D_1 S'_1 S_0 + D_2 S_1 S'_0 + D_3 S_1 S_0$

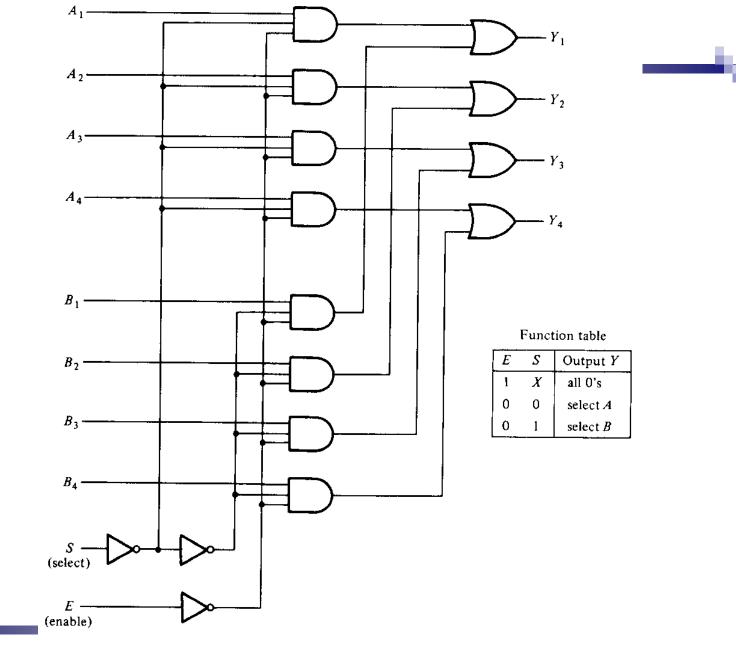


Logic Circuitry

- The implementation of this equation requires four 3-input AND gates, a 4-input OR gate, and two inverters to generate the complements of S₁ and S₀.
- Because data can be selected from anyone of the input lines, this circuit is also referred to as a data selector.

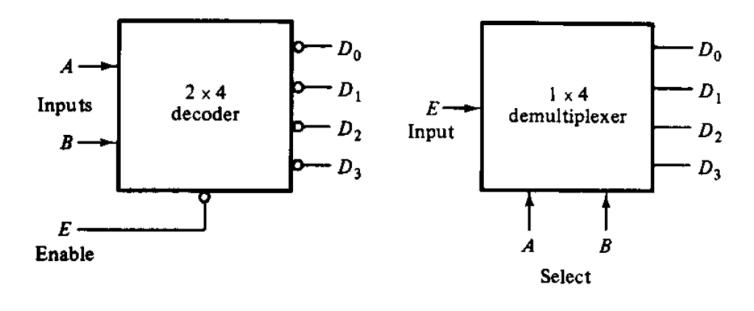
Multiplexer

Quadruple


- Two or more multiplexers are enclosed with one IC package.
- The selection and enable inputs in the multiple unit ICs may be common to the multiplexers.
- On the next slide a quadruple 2 line to 1 line multiplexer IC is shown.
- This type of IC is similar to IC type 74157.
- It has 4 MUX, each capable of selecting one of two output lines.

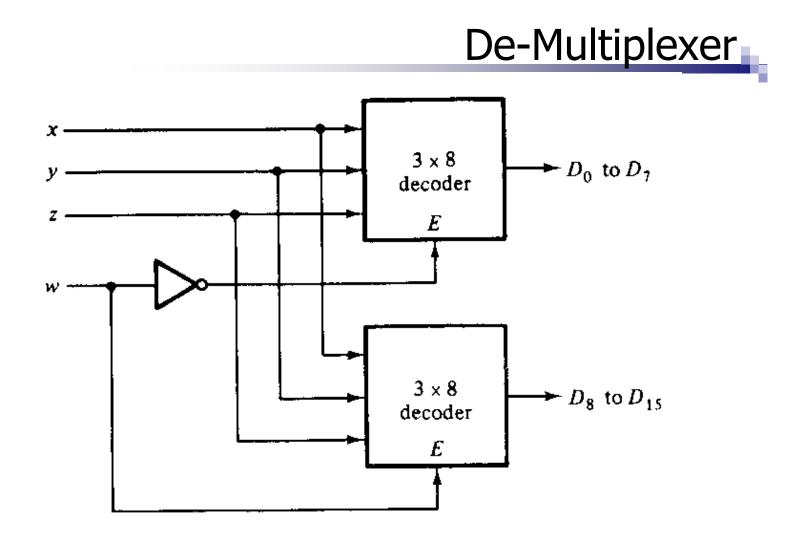
Quadruple

- Output Y1 can be selected to either A1 or B1.
- Output Y2 can be selected to either A2 or B2 and so on.
- One input Selection line S, is enough to select one of two lines in all four multiplexers.
- Enable E is used for activating and deactivating the MUX.
- If S=0, it selects A else B.
- The output have all zero if Enable E=1 regardless the value of the value of S



Basic functionalities

- A Demultiplexer (DEMUX) basically reverses the multiplexing function.
- It takes digital information from one line and distributes it to a given number of output lines.
- For this reason, the demultiplexer is also known as a data distributor.
- Decoders can also be used as demultiplexers.



Decoder with Enable

De-Multiplexer

Department of Computer Science

A 4 x 16 decoder constructed with two 3 x 8 line decoders

- Figure on next slide shows 1-line-to-4-line Demultiplexer (DEMUX) circuit.
 - The data-input line goes to all of the AND gates.
 - The two data-select lines enable only one gate at a time, and the data appearing on the data-input line will pass through the selected gate to the associated data-output line.

The De-Multiplexer

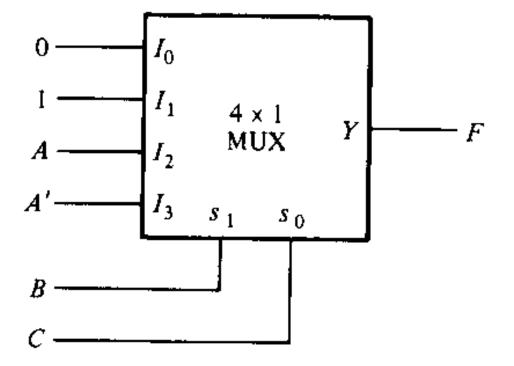
- A decoder with an enable input can function as a demultiplexer.
- A de multiplexer is a circuit that receives information on a single line and transmit it on to one of 2ⁿ possible output lines.
- The selection of a specific output line is controlled by the bit values of n selection lines.
- The decoder can function as a demultiplexer if the E line is taken as data input line and lines A and B are taken as the selection lines.

- Figure on slide 4, The data-input line goes to all of the AND gates.
- The two data-select lines enable only one gate at a time, and the data appearing on the datainput line will pass through the selected gate to the associated data-output line.

The truth table is as

Boolean Function Implementation

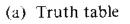
- Decoder can be used to implement a boolean function with addition of one OR Gate.
- In a multiplexer a full decoder with OR gate is present already.
- The minterm out of the decoder to be chosen can be controlled with the input lines.
- Example
 - F(A,B,C)= (1,3,5,6)



Solution

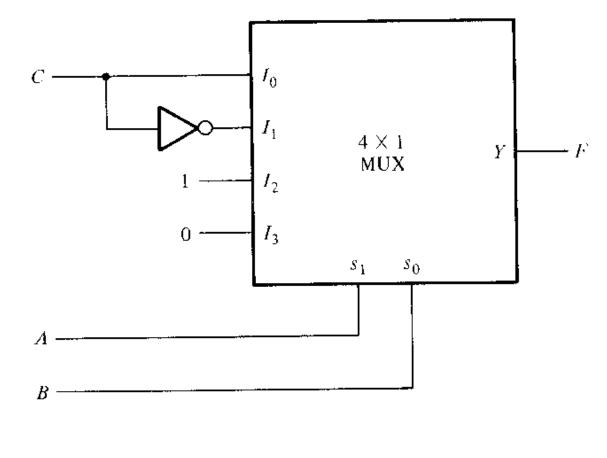
Minterm	A	B	С	F					
0	0	0	0	0					
1	0	0	1	1		I_0	I_1	Ι,	I_3
2	0	t	0	0	Α'	0	$\overline{\mathbb{O}}$	2	<u> </u>
3	0	1	1	1	A	4	Ğ	6	7
4	1	0	0	0	^		<u> </u>	<u> </u>	
5	1	0	1	1	ľ	0	1	Α	A'
6	1	1	0	1					
7	1	1	1	0					

Multiplexer implementation



Alternate Solution

If F(A,B,C) = (1,2,4,5) If A and B is selected as Selected input, then


A	В	С	F						
0	0	0	0	F = C					
0	0	1	1		!	I_0	1.	I_2	I ₃
0]	0	1	F = C'	C'	0	$\frac{-1}{(2)}$		6
0	1	1	0	I C	C		\mathcal{O}	$\overline{\mathbf{O}}$	0
1	0	0	1		С		3	(5)	7
1	0	1]	<i>F</i> = 1		C	C'	1	0
1	1	0	0	<i>F</i> = 0	(c) Implementation table				
l	1	1	0						

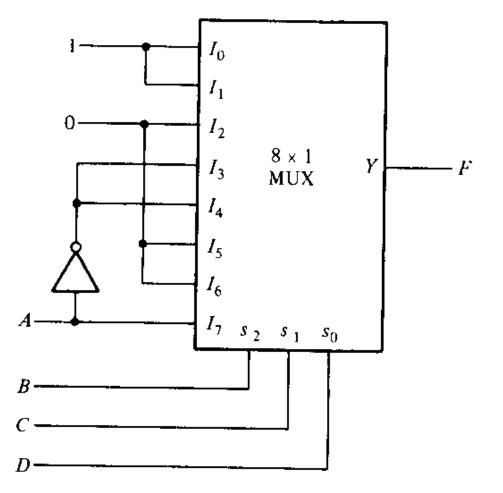
Department of Computer Science

MUX Implementation

Multiplexer connections

Implement the following function with a multiplexer:

 $F(A, B, C, D) = \Sigma(0, 1, 3, 4, 8, 9, 15)$


$I_1 \quad I_2 \quad I_3 \quad I_4 \quad I_5 \quad I_6$ I_0 17 2 ③ (4) 5 6 A'(1) 7 A 10 11 12 13 [8]14 0 A' A'0 1] 0 A

Implementation Table

Department of Computer Science

Multiplexer connections

Department of Computer Science