

Number System

RAB NAWAZ KHAN JADOON

Department of Computer Science

DCS

COMSATS Institute of Information Technology LECTURER CIIT LAHORE

Common Number Systems

System	Base	Symbols	Used by humans?	Used in computers?
Decimal	10	0, 1, 9	Yes	No
Binary	2	0, 1	No	Yes
Octal	8	0, 1, 7	No	No
Hexa- decimal	16	0, 1, 9, A, B, F	No	Yes

Quantities/Counting (1 of 3)

Decimal	Binary	Octal	Hexa- decimal
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7

Quantities/Counting (2 of 3)

Decimal	Binary	Octal	Hexa- decimal
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F

Quantities/Counting (3 of 3)

Decimal	Binary	Octal	Hexa- decimal
16	10000	20	10
17	10001	21	11
18	10010	22	12
19	10011	23	13
20	10100	24	14
21	10101	25	15
22	10110	26	16
23	10111	27	17

Etc.

Conversion Among Bases

The possibilities:

Quick Example

$$25_{10} = 11001_2 = 31_8 = 19_{16}$$
Base

Decimal to Decimal (just for fun)

Decimal to Binary

Decimal to Binary

Technique

- Divide by two, keep track of the remainder
- First remainder is bit 0 (LSB, least-significant bit)
- Second remainder is bit 1
- Etc.

Example

$$125_{10} = ?_2$$

Decimal to Binary conversion

Convert $(0.6875)_{10}$ to binary.

	Integer		Fraction
$0.6875 \times 2 =$	1	+	0.3750
$0.3750 \times 2 =$	0	+	0.7500
$0.7500 \times 2 =$	1	+	0.5000
$0.5000 \times 2 =$	1	+	0.0000

Answer: $(0.6875)_{10} = (0.1011)_2$

 $(41.6875)_{10} = (101001.1011)_2$

Binary to Decimal

Binary to Decimal.

Technique

- Multiply each bit by 2ⁿ, where n is the "weight" of the bit
- The weight is the position of the bit, starting from 0 on the right
- Add the results

Example

$$1 x 2^{0} = 1$$

$$1 x 2^{1} = 2$$

$$0 x 2^{2} = 0$$

$$1 x 2^{3} = 8$$

$$0 x 2^{4} = 0$$

$$1 x 2^{5} = 32$$

$$43_{10}$$

Octal to Decimal

Binary

Hexadecimal

Octal to Decimal

Technique

- Multiply each bit by 8ⁿ, where n is the "weight" of the bit
- The weight is the position of the bit, starting from 0 on the right
- Add the results

Example.

$$724_8 \implies 4 \times 8^0 = 4$$

$$2 \times 8^1 = 16$$

$$7 \times 8^2 = \frac{448}{468_{10}}$$

Hexadecimal to Decimal

Hexadecimal to Decimal.

Technique

- Multiply each bit by 16ⁿ, where n is the "weight" of the bit.
- The weight is the position of the bit, starting from 0 on the right.
- Add the results.

Example.

$$ABC_{16} = > C \times 16^{\circ} = 12 \times 1 = 12$$
 $B \times 16^{\circ} = 11 \times 16 = 176$
 $A \times 16^{\circ} = 10 \times 256 = 2560$
 2748_{10}

Octal to Binary

Octal to Binary

Technique

 Convert each octal digit to a 3-bit equivalent binary representation

Example

$$705_8 = ?_2$$

$$705_8 = 111000101_2$$

Hexadecimal to Binary

Hexadecimal to Binary

Technique

 Convert each hexadecimal digit to a 4-bit equivalent binary representation.

Example

$$10AF_{16} = ?_2$$

0001 0000 1010 1111

 $10AF_{16} = 0001000010101111_2$

Decimal to Octal

Binary

Hexadecimal

Decimal to Octal

- Technique
 - Divide by 8
 - Keep track of the remainder

Example

$$1234_{10} = ?_{8}$$

Decimal to Octal Conversion

Convert $(0.513)_{10}$ to octal.

$$0.513 \times 8 = 4.104$$

$$0.104 \times 8 = 0.832$$

$$0.832 \times 8 = 6.656$$

$$0.656 \times 8 = 5.248$$

$$0.248 \times 8 = 1.984$$

$$0.984 \times 8 = 7.872$$

Answer $(0.513)_{10} = (0.406517...)_8$

$$(153.513)_{10} = (231.406517)_8$$

Decimal to Hexadecimal

Decimal to Hexadecimal

- Technique
 - Divide by 16
 - Keep track of the remainder

Example

$$1234_{10} = ?_{16}$$

Binary to Octal

Binary to Octal

Technique

- Group bits in threes, starting on right
- Convert to octal digits

Example

$$1011010111_2 = ?_8$$

 $1011010111_2 = 1327_8$

Binary to Hexadecimal

Binary to Hexadecimal

Technique

- Group bits in fours, starting on right
- Convert to hexadecimal digits

Example

$$1010111011_2 = ?_{16}$$

$$1010111011_2 = 2BB_{16}$$

Octal to Hexadecimal

Octal to Hexadecimal

- Technique
 - Use binary as an intermediary

Example

$$1076_8 = ?_{16}$$

 $1076_8 = 23E_{16}$

Hexadecimal to Octal

Hexadecimal to Octal

- Technique
 - Use binary as an intermediary

Example.

$$1F0C_{16} = ?_{8}$$

$$1F0C_{16} = 17414_{8}$$

Exercise – Convert ...

Decimal	Binary	Octal	Hexa- decimal
33			
	1110101		
		703	
			1AF

Exercise – Convert

Answer

Decimal	Binary	Octal	Hexa- decimal
33	100001	41	21
117	1110101	165	75
451	111000011	703	1C3
431	110101111	657	1AF

Common Powers (1 of 2)

Base 10

Power	Preface	Symbol	Value
10 -12	pico	р	.00000000001
10 -9	nano	n	.00000001
10 -6	micro	μ	.000001
10 -3	milli	m	.001
10 ³	kilo	k	1000
10 6	mega	М	1000000
10 9	giga	G	100000000
10 ¹²	tera	T	100000000000

Common Powers (2 of 2)

Base 2

Power	Preface	Symbol	Value
210	kilo	k	1024
2 20	mega	М	1048576
2 30	Giga	G	1073741824

- What is the value of "k", "M", and "G"?
- In computing, particularly w.r.t. memory, the base-2 interpretation generally applies

Example

Review – multiplying powers

For common bases, add powers

$$a^b \times a^c = a^{b+c}$$

$$2^6 \times 2^{10} = 2^{16} = 65,536$$

or...

$$2^6 \times 2^{10} = 64 \times 2^{10} = 64k$$

Binary Addition (1 of 2)

Two 1-bit values

Α	В	A + B
0	0	0
0	1	1
1	0	1
1	1	10

"two"

Binary Addition (2 of 2)

Two n-bit values

- Add individual bits
- Propagate carries
- E.g.,

$$\begin{array}{r}
 1 & 1 & 1 \\
 1 & 0 & 1 & 21 \\
 + 1 & 1 & 0 & 0 & 1 \\
 + 1 & 1 & 0 & 0 & 1 \\
 1 & 0 & 1 & 1 & 0
 \end{array}$$
 $\begin{array}{r}
 1 & 0 & 1 & 0 & 0 \\
 + 1 & 1 & 0 & 0 & 1 \\
 & 1 & 0 & 1 & 1 & 0
 \end{array}$
 $\begin{array}{r}
 1 & 0 & 1 & 0 & 0 & 0 \\
 + 1 & 1 & 0 & 0 & 1 & 0 \\
 & 1 & 0 & 1 & 1 & 0 & 0
 \end{array}$
 $\begin{array}{r}
 1 & 0 & 0 & 0 & 0 & 0 \\
 & 1 & 0 & 0 & 1 & 0 & 0
 \end{array}$
 $\begin{array}{r}
 1 & 0 & 0 & 0 & 0 & 0 \\
 & 1 & 0 & 0 & 1 & 0 & 0
 \end{array}$

Multiplication (1 of 3)

Decimal (just for fun)

```
35
x 105
175
000
35
3675
```


Multiplication (2 of 3)

Binary, two 1-bit values

Α	В	$A \times B$
0	0	0
0	1	0
1	0	0
1	1	1

Multiplication (3 of 3)

- Binary, two n-bit values
 - As with decimal values
 - E.g.,

```
1110

x 1011

1110

1110

0000

1110

10011010
```


Fractions.

Decimal to decimal (just for fun)

$$3.14 \Rightarrow 4 \times 10^{-2} = 0.04$$

$$1 \times 10^{-1} = 0.1$$

$$3 \times 10^{0} = 3$$

$$3.14$$

Fractions.

Binary to decimal

$$\begin{array}{rcl}
 10.1011 & = > & 1 & x & 2^{-4} & = & 0.0625 \\
 1 & x & 2^{-3} & = & 0.125 \\
 0 & x & 2^{-2} & = & 0.0 \\
 1 & x & 2^{-1} & = & 0.5 \\
 0 & x & 2^{0} & = & 0.0 \\
 1 & x & 2^{1} & = & 2.0 \\
 \hline
 2.6875
 \end{array}$$

Fractions.

Exercise – Convert ...

Decimal	Binary	Octal	Hexa- decimal
29.8			
	101.1101		
		3.07	
			C.82

Exercise – Convert ...

Answer

Decimal	Binary	Octal	Hexa- decimal
29.8	11101.110011	35.63	1D.CC
5.8125	101.1101	5.64	5.D
3.109375	11.000111	3.07	3.1C
12.5078125	1100.10000010	14.404	C.82

