A performance comparison of recent network
simulators

Elias Weingartner, Hendrik vom Lehn and Klaus Wehrle
Distributed Systems Group
RWTH Aachen University
Aachen, Germany
Email: {weingaertner,vomlehn,wehji@cs.rwth-aachen.de

Abstract—A widespread methodology for performance analysis with hundreds of thousands of nodes. In order to face those
in the field of communication systems engineering is network challenges, a couple of enhancements of ns-2 have been

simulation. While ns-2 has established itself as virtuallythe 1, q505e4, for instance the incorporation of parallelafil6].
standard network simulation tool, other network simulators have

gained more and more attention during the last years. In this JOWEVer, ns-2 is currently undergoing a major redesign [6].
paper, we briefly survey new developments in the field of netwe ~ One of the main development goals of its successor, ns-3, is
simulation and conduct a performance comparison study by the improvement of simulation performance.

impIeTnentinzg fgddNe':Eia' sirgulast!onpset-ug iJnSf'il\'//eSVS\;/&nl\Lljgbg’ Besides ns-2, over a dozen network simulators are presently
namely ns-2, et++, ns-3, SimPy and Ji . Our i : ; ; ;

results reveal large differences according to both run-tine per- gsed in academia and in the industry. Pr.ommem examples
formance and memory usage. include OMNeT++ [19], the Java-based JiST [3] and com-

mercial tools such as the OPNet modeler [14]. In addition,
. INTRODUCTION specialized simulation tools, such as the WSN simulator
Network simulation is without a doubt one of the mosTOSSIM [9], serve dedicated research domains. This leaves
predominant evaluation methodologies in the area of coetpuiany researchers and graduate students with the question of
networks. It is widely used for the development of newvhich network simulator to use, especially if one is intégds
communication architectures and network protocols. Seeda in achieving a high simulation performance.
network simulators allow one to model an arbitrary computer |n this paper, we focus on current developments regarding
network by specifying both the behavior of the network nodespen source simulators. In Section Il, we provide a brief
and the communication channels. For example, in order ¢Qerview of network simulators which have recently gained
investigate the characteristics of a new routing protoita attention in the research community. The main contribution
usually implemented in a network simulator. Afterwards thof this paper is a performance comparison study incorporat-
routing behavior can be easily studied in different top@eg ing five different open source simulation tools, namely ns-
given the fact that the network topology is merely a set[13], ns-3 [6], OMNeT++ [19], JiST [3] and SimPy [11].
of simulation parameters. Most available network simolati By implementing the same simulation and equal simulation
toolkits are based on the paradigm of discrete event-basaddels from scratch for all of them, we are able to compare
simulation [5] (DES). Here, the simulated network nodege simulator performance itself without any distortionssed
trigger events, for instance, when a packet is sent to anothg different implementations of simulation models. Theigies
node. The simulator maintains an event queue sorted &yd the outcome of this performance comparison study are
the scheduled event execution time. The simulation itself discussed in Section Ill. As a matter of fact, this is not the
performed by successively processing the events in theequefitst performance comparison of network simulators. Howgeve
The first approaches where DES was applied to the simuta-our knowledge none of those studies include recent con-
tion of computer networks were published about two decadgibutions like ns-3. In Section IV, we discuss such related
ago [4, 8]. ns-2 [13] is a direct successor of those earherformance evaluation studies and compare their resiths w
efforts and since then, it has become virtually the standatéke ones presented in this paper. We conclude in Section V

for network simulation. This can be attributed to the fa@tthith the lessons we learned from this performance compariso
numerous models, e.g. protocol models and traffic genesator

are publicly available for ns-2. They can be used off-the- I
shelf, thus eliminating the need of implementing them by

hand. However, a major shortcoming of ns-2 is its limited In this section, we concisely introduce the network simula-

scalability [6, 20] in terms of memory usage and simulatiotors considered in the performance comparison. We emphasiz
run-time. This is especially a problem as new research dmnaihat ns-3, OMNeT++ and JiST are all gaining more and

in the field of computer networks, such as wireless sensoiore prevalence compared to the long-established ns-2. We
networks (WSNSs), peer-to-peer networks or grid architestu include ns-2 here to form a baseline. In addition, SimPy

require the simulation of very large networks, potentiallwas incorporated in the comparison as it represents a modern

. INVESTIGATED SIMULATION TOOLS

implementation of a process-oriented simulator in the paopu Like the aforementioned ns-2 and ns-3, OMNet++ rests
Python language. upon C++ for the implementation of simple modules. How-
ever, the composition of these simple modules into compound
A ns2 modules and thus the set-up of network simulation takeseplac
Network simulations for ns-2 are composed of C++ cod@& NED, the network description language of OMNeT++. NED
which is used to model the behavior of the simulation nodes, transparently rendered into C++ code when the simulation
and oTcl scripts that control the simulation and specifyifar is compiled as a whole. Moreover, NED supports the specifi-
aspects, for instance the network topology. This desigiicehocation of variable parameters in the network descriptiar. F
was originally made to avoid unnecessary recompilationsdkample the number of nodes in a network can be marked to be
changes are made to the simulation set-up [6]. Back dtynamic and later on be configured at runtime. In this cage, th
1996 when the first version of ns-2 was released, this wasdules representing the nodes are dynamically instedtiat
a reasonable intent, as the frequent recompilation of Cby the simulator during execution. This feature is a direct
programs was indeed time-consuming and slowed down tbensequence of the simulator’s strict object-orientedgies
research cycle. However, from today’s perspective, theggdes
of ns-2 trades off simulation performance for the saving &- JiST

recompilations, which is questionable if one is interested A fresh approach to network simulation is JiST (“Java in
conducting scalable network simulations. Simulation Time”), which in compliance with its name allows
B. ns-3 tht_—? implementatio_n of ngtwork sim_ulations in sta_ndard Java
It is mostly used in conjunction with SWANSa simulator
Like its predecessor, ns-3 relies on C++ for the implgpr mobile ad hoc networks built on top of JiST.

mentation of the simulation models. However, ns-3 no longer Network simulations in JiST are made up of entities which
uses oTcl scripts to control the simulation, thus abandpnifepresent the network elements, for example nodes, with-sim
the problems which were introduced by the combinatiqgtion events being formed by method invocations amongethos
of C++ and oTcl in ns-2. Instead, network simulations igntities. The entities advance the simulation time indepen
ns-3 can be implemented in pure C++, while parts of thgantly by notifying the simulation core. While the code desi

simulation optionally can be realized using Python as welln entity is executed like any arbitrary Java program, only
Moreover, ns-3 integrates architectural concepts and fod®e the interactions between the individual entities are edrdut

GTNetS [17], a simulator with good scalability charactie® iy simulation time. Thus, these interactions between iestit
These design decisions were made at expense of compgtibilibrrespond to synchronization points and facilitate thaipet

In fact, ns-2 models need to be ported to ns-3 in a manyglecytion of code at different entities, resulting in a ptite
way. Besides performance improvements, the feature setgkformance gain. In order to execute the implementation in
the simulator is also about to be extended. For example, Ngi@ylation time, JiST utilizes a custom dynamic Java class
is slated to s_upport the integration of real implementation|gader which dynamically rewrites the application’s bytele.
code by providing standard APIs, such as Berkeley socketsnpfortunately, the official development of JiST has stalled

or POSIX threads, which are transparently mapped to thg it is no longer maintained by its original author, RimomrBa
simulation [1]. However, a couple of enhancements and improvements have

C. OMNeT++ recently been released by Ulm Universitywe incorporate

_ those enhancements in our performance analysis of JiST in
In contrast to ns-2 and ns-3, OMNeT++ is not a networkgqction |11

simulator by definition, but a general purpose discrete even
based simulation framework. Yet it is mostly applied to the, SmPy

domain of network simulation, given the fact that with its .,
) . : . With SimPy, we include a process-oriented discrete-event
INET package it provides a comprehensive collection of

- Simulator in this performance comparison. Unlike the other
Internet protocol models. In addition, other model package. . . :
imulators, no public available network models exist for

such as the OMNeT++ Mobility Framework and Castalia [15]. L . . X .
- . . g . imPy. Instead, it is a bare simulation API written in Python
facilitate the simulation of mobile ad hoc networks or wasd . oo . "
In SimPy, the basic simulation entities are processes. They

Sensor networks. are executed in parallel and may exchange Python objects

OMNeT++ simulations consist of so-calletinple modules among each other. Most processes include an infinite loo
which realize the atomic behavior of a model, e.g. a paicul. 9 ' P P

i . . in which the main actions of the process are performed.
protocol. Multiple simple modules can be linked togeth . .
: ; : esides abstractions for processes and the related exeloéng
and form acompound module. For instance, multiple simple

: : . . objects, SIimPy provides instructions for the synchromrat
modules which provide protocol models can be combined infQ" . : o
. of simulation processes and commands for the monitoring of
a compound module representing a host node. A netwar. .
. S L ; Sjmulation data.
simulation in OMNeT++ is implemented itself as a compoun

module which comprehends other compound modules, like the;ist/swans website: http:/jist.ece.comell.edu/
ones which model host nodes. 2UIm University's JiST portal: http://www.vanet.info/fiswans/

OMNeT++

Sencer 0--0--0 e ;

o -:". o amay " Ji
-

08 -

0 (5] o 0 0o |

Loss 0.4

02 -

o o (10} (11} I P

06
Drop Probability

@ @ @ @ Receiver

Fig. 1. Sample Network Topology (size=16) Fig. 2. End-to-End Packet Loss

1400

I1l. PERFORMANCE COMPARISON OMNeTss -
ns-
. . . n i % a]
This section describes the methodology and the outcome of O Smpy Lo
. 2 2
the performance study which includes the simulation tomls i z w0l Le”

. ju)
troduced in the previous section. The comparison is based on g a00 | a°
benchmark scenario and discloses large differences aogord 5 =
to simulation run-time and memory usage. 3 600 o

13 a a
3 a0 f = ast

A. Methodology

With the goal of comparing the simulators’ core perfor-
mance, we first implemented a reference simulation in all
simulation toolkits from scratéh Our benchmarking simu-
lation does not rely on any existing simulation model for
any simulator. This decision was made because a network Fig. 3. Simulation runtime vs. Network size

simulation’s performance is largely dependent on the Cddeé?to 1024 nodes. The simulation time was set to 600 seconds.

the network model; and .their computationa}l complexity. Figure 2 depicts the end-to-end packet loss retrieved fiam t
thJhneoczzfserspeCerr;?;?;I()i: rgosc:qi;: :)oaps(l)lcogjtg:rli(ll,ug?: ¥ sim_ulations, given thg drop pr.obability and a netwodesi
o i ly SimPy produces slightly higher loss rates on average,
in Figure 1. One sendmg noqle generates one pac_ket EVibivever still within the limits of tolerance. From theseuks,
second and broadcasts it to its neighbors. The neighbor 9 conclude that our independent implementations of the
nodes relay unseen messages after a delay of one second,rt Fence simulation in fact produce equivalent results
flooding the entire network. The propagation delay is diyect '

implemented by delaying the simulation events’ executon, ¢, Performance comparison

the nodes do not implement a explicit queueing policy. With _. . .
P P d g poticy Given the fact that our simulation set-ups produce equal

a fixed probability which is equal on every link, packets are o . :

dropped on the channel. The receiver is located at the corﬁ%?lél.ts’ we nowfcompare the !nd.|V|(:ruaI _s!mullat_|on tools re-
opposite to the receiver. We chose this simulation sceffiario gar mgdtwo periormance me(;rlcs. € e(I:tlsarnuhano_n rllm- ,
its simplicity, not aiming at a simulation of a real network. time andmemory usage In order to evaluate the simulators

Al simulation runs were conducted on a AMD Athlon 6 calability, we conducted two series of different runs gghme
3800+ workstation with 2GB of RAM, running Ubuntu I_inuxreference simulation. In the first series, the drop prolitghd

8.04 LTS. Our measurements were taken using ns-2 versFoeﬁ to a fixed value of 0.10 with the network size ranging

n
=]
=]

T

o RV
N "
3 : ‘ ‘

o

1000 1500 2000 2500 3000 3500
Network Size

2.33, OMNeT 3.4b2, ns-3.1, SimPy 1.9.1 and JiST 1.06 wi Eom 4 to 3025 nodes. The second series uses a fixed network

the extensions from Ulm University. We made use of SU ize of 3025 nodes, given drop probabilities between 0.0 and

Java 1.5.0.11 for the execution of JiST, and SimPy was r%ho' Al re;ults provided n the.followmg are averages over
. Ive executions of each simulation series. In both series, th
with Python 2.5.1.

simulation time was set to 600 seconds.
B. Model equality 1) Smulation run-time: Figure 3 shows the measursiin-

: ulation runtime at different network sizes for the compared
As we implemented the same simulation set-up in five

different simulators, we first checked if our implementatio simulation tools. First of all thgse results.reveal thaniBy
: . , . does not scale well and hence is not applicable to largescal
yield results which are on par with each other. For this psepo

we ran the simulation in all simulators for drop probabsii network simulations: For a network size of 302.5 ”Od?s’ It
between 0 and 1 with the square topology size ranging frorgﬁeds 1225 seconds on average to complete the simulation run
In contrast to that, JiST finishes the same task about 14 times

3The respective source code is available at faster, resulting in an average execution time of 86 seconds

http://ds.cs.rwth-aachen.de/research/projects/sitpene/ The overall run-time performance of JiST is astonishing at

1400 140 -
OMNeT++ + OMNeT++ <
2} ns-3 ns-3 <
1200 - JST 120 - JiST X
SimPy O SimPy © ¥
ns-2 a ns-2 IN x*’
% 1000 | B = 100} .
g =
KX
F 800 g, 8o - o o
'§ 8 2 ™ Eggfﬂ
2 600} T 60l ¥ e
g) g **}‘% E‘:Eﬁ*’*
§ h 2 R BT
© 400 - - 40 ,...8*% En@é@%
= Flle
20
0 L - = " & 0 L ! .)
0 0.2 0.4 0.6 0.8 1 0 500 1000 1500 2000 2500 3000 3500
Drop Probability Network Size

Fig. 5. Memory usage vs. Network size

Fig. 4. Simulation run-time vs. Drop probability 160

OMNeT++ +
140 b ke ns3

. . L. X JIST x
the first glance, given the fact that it is based on Java and 120 L SIney
still outperforms OMNeT++ and ns-3, which are executed

in a native manner. We attribute this winning margin to the

o

100

Memory Usage [MB]

architecture of JiST: Besides the parallel execution déesht L

entities, JiST performs different run-time optimizatidresed 6ol

on the analysis of the executed byte code. Moreover, it has

been shown that the slowness of Java is merely a myth, and or

that recent Java run-time environments can keep up with the 20 -

execution speed of compiled C++ code [10]. According to 0. = ” - - 1

the run-time performance of ns-3, the architectural improv

ments, especially the abolishment of the oTCL/C++ duality,
are clearly reflected in our results, as ns-3 is considerably Fig. 6. Memory usage vs. Drop probability

faster than its predecessor. While the run-time performanc

of OMNeT++ is slightly inferior to ns-3 and JiST, all threedo not suffice as single explanation. The memory usage

simulation tools exhibit almost the same scalability adang performances of ns-2, OMNeT++ and SimPy share a similar

to simulation run-time. linear growth of memory usage, with ns-3 being the most

Additional insight about the run-time behavior of the difefficient simulation tool in this regard.
ferent simulators can be derived from the results in Figure Figure 6 shows the memory usage measured during the
4. Here, we picture the averaged run-time from the secosécond simulation series. As mentioned earlier, for ladyep
simulation series for a fixed network size of 3025 nodes amiobabilities the number of events prevalent in the sinntat
a varying drop probability. With increasing drop probai®k, is considerably small and thus the memory usage here remains
the simulation run-time naturally decreases in a quickitash almost constant. This almost “constant” memory footprat i
for all simulators, as more and more packets are removewstly constituted by the simulation core and a potentiat ru
from the simulation, thus resulting in fewer events to b#me environment, such as the JavaVM in the case of JiST
processed. In other words, the drop probability directfiests or Python, which is required for the execution of SimPy.
the quantity of events prevalent in the simulation. We reoticAccording to JiST, the footprint is slightly larger than trod
that SimPy’s simulation run-time increases much fasteowt | ns-2 and the other simulators, but far smaller than the one of
drop probabilities than any one of the other simulatorsniFroSimPy. However, for lower drop probabilities and hence more
our results we conclude that SimPy in fact has a lower evesitmulation events, the memory usage of JiST grows faster tha
throughput than the other simulation cores. with any other simulation tool.

2) Memory usage: Similar to our analysis of the simulation
run-time, we measured the maximumemory usageof the
individual simulators during the two series of simulatioms. A couple of network simulator performance comparisons
The outcome is depicted in Figure 5. Surprisingly, JiST uséave been published in recent years. Most of the more recent
up much more memory resources than the other simulationes compare ns-2 with other simulation tools. One examsple i
tools. We first attributed this behavior to the garbage ctibe the work presented in [12], where the performance of a TCP-
mechanism, but the amount of used memory does not decrelaased reference simulation implemented in ns-2 is checked
if the garbage collection is manually triggered at times. lagainst SSFNet and JavaSim (how known J-Sim), two older
addition, the difference in memory usage between JiST asidnulators. In their work, the authors also observe larde di
the other tools increases at larger network sizes, and htree ferences regarding memory consumption and simulation run-
additional memory requirements of the Java virtual machiniene, with ns-2 performing best according to computational

Drop Probability

IV. RELATED WORK

demands and worst according to memory consumption. REFERENCES

A performance comparison, which in addition to ns-2, alsq1] ns-3 Overview (June 2008).
includes earlier versions of SimPy and OMNeT is presented http://www.nsnam.org/docs/ns-3-overview.pdf, June&00
in [2]. The authors only provide results concerning the runi?l D.aAclgﬁ?erdeireﬁgi(\j/eM'e'i?oergrjr?aer:'c es?aﬂgps%g'etw%z gmﬁmﬁg o
Flme perfprmance in their Paper, and the used simulation 77/2005,pTU Wien, Iﬁstitut fur Technische Ir¥f.ormatik, 00 P
is small in terms of network size. However, the outcomes; r Barr, z. J. Haas, and R. van Renesse. JiST: an efficient
is similar to ours, with OMNeT++ outperforming ns-2 and ~ approach to simulation using virtual machineSoftw, Pract.
SimPy. Regarding SimPy, the authors also note its sluggish Exper, 35(6):539-576, 2005.
performance. [4] A. Dupuy, J. Schwartz, Y. Yemini, and D. Bacon. Nest: a

Two recent publications [7, 18] analyze the charactesstic ~ N€Work simulation and prototyping testoeommun. ACM,

. . ; . 33(10):63-74, 1990.
of J'ST/SWANS in contrast to ns-2. Unlike our WOI‘!(, which (51 G.'s. Fishman.Principles of Discrete Event Smulation. John
focuses mainly on the performance of the simulation cores, wiley & Sons, Inc., New York, NY, USA, 1978.
the authors compare ns-2 and JiIST/SWANS in a complef6] T. R. Henderson, S. Roy, S. Floyd, and G. F. Riley. ns-3euto
simulation of a mobile ad hoc network, using available imple ~ goals. INWNS2 '06: Proceeding from the 2006 workshop on
mentations of routing protocols bundled with both simulsto 2%36 tr,‘o?cll\i network simulator, page 13, New York, NY, USA,
G'Ven. the same parameters, the authors Qbserve.that n 7% F. Kargl and E. Schoch. Simulation of manets: a qualiati
and JiST/SWANS require about the same time to finish the = comparison between JiST/SWANS and ns-2. NtobiEval
simulation run, with ns-2 exhibiting much higher memory '07: Proceedings of the 1st international workshop on System
demands than JiST in the given scenario. At first sight, evaluation for mobile platforms, pages 41-46, New York, NY,
this seems to contradict our results presented in Sectlon Il USA, 2007. ACM.

. .] S. Keshav. Real: A network simulator. Technical report,
However, this phenomenon can be explained by the fact th([ﬁ University of California at Berkeley, Berkeley, CA, USA, 88

the radio models of ns-2 duplicate messages in memory, e.@] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: accerat
if a packet is broadcasted to other nodes. On the contragy, th and scalable simulation of entire TinyOS applications. In
radio models implemented in SWANS pass solely references !n Proceedings of the 1st ACM Conference on Embedded

. - - . Networked Sensor Systems (SenSys 2003)., 2003.
to static packet data among the entities, resulting in a mu %] 3. Lewis and U. Nae,umanr(L szorma%ce of Java versus Ci+.

smaller memory consumption. These results, in combination™ . /s idiom.com#zilla/Computer/javaCbenchmark.htm

with ours, affirm that the scalability of simulations andated (accessed 08/25/2008), 2004.
performance matters are in fact heavily influenced by th#l] K. Mueller. SimPy documentation.
simulation models. http://simpy.sourceforge.net/discuss.htm.
[12] D. M. Nicol. Scalability of network simulators revisid. In
V. CONCLUSION Proceedings of the Communication Networks and Distributed

. . . . Systems Modeling and Smulation Conference, Orlando, FL,
In this paper, we investigated the performance requiresnent February 2003.

and the scalability of five different simulation tools. Qasults 13] The network simulator ns-2. http:/Awww.isi.edu/nswas/.
show that three of them, ns-3, OMNeT++ and JiST are gll4] OPNET Technologies Inc. OPNET modeler website.
capable of carrying out large-scale network simulations in http://www.opnet.com/solutions/networkrd/modeler.html.

an efficient way. JiST has proven to be the fastest simulaidp! ;‘)- r':-alpdh:nlqon %eitesd:ﬁdvi\tgﬁizngngaﬁ#r (?(?eléltijisr:\ Egn:h:i%g?t
by far in our experllm.en.ts, however_ .the_ exhaustlye Memory | ege Interrlz\at)i/onal Symposium on a World of V\A?eless Mobile
consur_npnon may limit its appl|cab|I|ty in some simulation and Multimedia Networks (WoWMoM 2007)., pages 1-6, June
scenarios. In our performance comparison, ns-3 demoedtrat 2007.

the best overall performance. Although it was surpassed] G. Riley. PDNS project website.

JiST in terms of simulation run-time, it still shows both low __ http://www.cc.gatech.edu/computing/compass/pdns/.

; G. Riley. Large scale network simulations with GTNetS
computational and less memory demands. However, at pre#}ﬁl Proceedings of the 2003 Winter Simulation Conference, 2003,

ns-3 still is in the early stages, and just a few simulatiog) g schoch, M. Feiri, F. Kargl, and M. Weber. Simulatiohaal
models exist which one can use off the shelf. As the ric hoc networks: ns-2 compared to JiST/SWANS Pioceedings
collection of models for ns-2 still needs to be ported from ns of the First International Conference on Smulation Tools and

2 to ns-3, OMNeT++ can be considered as viable alternative. $&T”iggg§;0f’\fommgggﬂOnS. Networks and Systems (SIMU-

0 Y : . ools , Marc }

WhlIe_|ts performance is slightly inferior than that of _ns—ilg A Varga and R. Hornig. An overview of the OMNeT++
and JiST, over the last few years a very comprehensive S€U giyyjation environment. IrProceedings of the First Inter-
of models has been developed for this simulator. Moreover, national Conference on Smulation Tools and Techniques for
OMNeT++ provides a rich graphical user interface and an Communications, Networks and Systems (SMUTools 2008'),
abstract modeling language, while JiST and ns-3 rely on pure March 2008. _
source code for the development of the entire simulation. if°] Y- Xue, H. S. Lee, M. Yang, P. Kumarawadu, H. Ghenniwal an

USi h . f which simul . diffi W. Shen. Performance evaluation of ns-2 simulator for \wsgl
conclusion, the question of which simulator to use Is a aiftic sensor networksProceedings of the Canadian Conference on

one, and the answer is largely dependent on the specific use Electrical and Computer Engineering (CCECE 2007), pages
case. However, if scalability is the main concern, JiST3ns- 1372-1375, April 2007.

and OMNeT++ are smart choices.

