
1 | P a g e  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rab Nawaz 

PhD Scholar (Reg#: BL16006002) 

School of Information Science and Technology 

University of Science and Technology of China, Hefei 

Email: rabnawaz@mail.ustc.edu.cn  

 

Submitted to 

Prof. Yin Baoqun 

Email: bqyin@ustc.edu.cn  

  

University of Science and Technology of China 

Hefei, China 

mailto:rabnawaz@mail.ustc.edu.cn
mailto:bqyin@ustc.edu.cn


2 | P a g e  

General Overview ..................................................................................................................................... 4 

Chapter 1 .................................................................................................................................................. 5 

              1.1 Stochastic Learning .................................................................................................................. 5 

1.2 An Overview of Learning and Optimization .............................................................................. 5 

1.3 Problem Description ................................................................................................................ 5 

1.4 Optimal Policies ...................................................................................................................... 7 

            1.4.1 Open-Loop Policies .......................................................................................................... 7 

            1.4.2 Closed-Loop (Feedback) Policies ...................................................................................... 7 

1.5 Fundamental Limitations of Learning and Optimization ............................................................ 9 

              1.5.2 Learning and Optimization ............................................................................................. 9 

1.6 The Fundamental Limitations of Learning and Optimization ..................................................... 9 

1.7 Performance Gradients .......................................................................................................... 10 

Chapter  02 ............................................................................................................................................. 13 

2.1 Perturbation Analysis ............................................................................................................ 13 

2.2 Perturbation Analysis of Markov Chains ................................................................................. 13 

2.3 Perturbation Realization Factors and Performance Potentials ................................................. 16 

2.4 Performance Derivation Formulas .......................................................................................... 16 

2.5 Performance sensitivity of Markov Processes ......................................................................... 19 

2.6 Performance Sensitivities of Semi-Markov Processes ............................................................. 19 

2.7 The Embedded Chain and the Sojourn (Break) Time ............................................................... 19 

2.8 Performance Sensitivity Formulas .......................................................................................... 20 

2.9 Perturbation Analysis of Queuing System ............................................................................... 21 

2.10 Three Fundamental rules of Perturbation Analysis ............................................................... 21 

2.11 The Goal of Perturbation Analysis ........................................................................................ 22 

Chapter 03 .............................................................................................................................................. 23 

3.1 Learning and Optimization with Perturbation Analysis ........................................................... 23 

3.2 The Fundamental Ergodic Theorem ........................................................................................ 23 

3.3 Optimization: ........................................................................................................................ 25 

3.4 Optimization with Perturbation Analysis (PA) ........................................................................ 26 

             3.4.1 Gradiant Methods ........................................................................................................ 26 

             3.4.2 Sample path based implementation .............................................................................. 26 



3 | P a g e  

3.5 Applications of Perturbation Analysis..................................................................................... 27 

4. Referenced book ................................................................................................................................. 28 

Acknowledgment .................................................................................................................................... 28 

 

 

Referenced Book 

Stochastic Learning and Optimization by Xi-Ren Cao 

[A Report on First Three Chapters]  



4 | P a g e  

General Overview 
Information is playing an increasing role in our industrialized society. A technical overview of the 

flourishing electronics industry stated in 1987: "On almost every technology front, the driving force 

behind new developments is the ever-rising demand for information. Huge amounts of data and 

information, larger than anyone ever dreamed of a generation ago, have to move faster and faster 

through processors and networks, then end up having to be stored. 

The goal of learning and optimization is to make the “best” decisions to optimize, or to improve, the 

performance of a system based on the information obtained by observing and analyzing the system’s 

behavior. A system’s behavior is usually represented by a model, or by the sample paths (also called 

trajectories) of the system. A sample path is a record of the operation history of a system. 

Performance optimization plays an important role in the design and operation of modern engineering 

systems in many areas, including communications (Internet and wireless networks), manufacturing, 

logistics, robotics, and bioinformatics. Most engineering systems are too complicated to be analyzed, 

or the parameters of the system models cannot be easily obtained. Therefore, learning techniques have 

to be applied. 

To develop efficient algorithms for performance optimization, we need to explore the special features 

of a system. This process is called learning. For dynamic systems, learning may involve observing and 

analyzing a sample path of a system to obtain necessary information; this is in the normal sense of the 

word “learning”, as it is used in research areas such as reinforcement learning. Simulation-based and 

on-line optimization approaches are based on learning from sample paths. 

If we know something about the structure and the dynamics of the system, we may develop efficient 

optimization techniques (analytic, simulation, on-line, learning, etc.). 

Stochastic processes have applications in many disciplines including sciences such as biology, 

chemistry, ecology, neuroscience, and physics as well as technology and engineering fields such 

as image processing, signal processing, information theory, computer science, cryptography 

and telecommunications. Furthermore, seemingly random changes in financial markets have motivated 

the extensive use of stochastic processes in finance. 
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Chapter 1 

1.1 Stochastic Learning 
The term stochastic occurs in a wide variety of professional or academic fields to describe events 

or systems that are unpredictable due to the influence of a random variable. The word "stochastic" 

comes from the Greek word στόχος (stokhos, "aim"). Researchers refer to physical systems in which 

they are uncertain about the values of parameters, measurements, expected input and disturbances as 

"stochastic systems". In probability theory, a purely stochastic system is one whose state is randomly 

determined, having a random probability distribution or pattern that may be analyzed statistically but 

may not be predicted precisely. In this regard, it can be classified as non-deterministic (i.e., "random") 

so that the subsequent state of the system is determined probabilistically. Any system or process that 

must be analyzed using probability theory is stochastic at least in part. Stochastic systems and processes 

play a fundamental role in mathematical models of phenomena in many fields of science, engineering, 

finance and economics. 

1.2 An Overview of Learning and Optimization 
Performance optimization plays an important role in the design and operation of modern engineering 

systems in many areas, including communications (Internet and wireless networks), manufacturing, 

logistics, robotics, and bioinformatics. Most engineering systems are too complicated to be analyzed, 

or the parameters of the system models cannot be easily obtained. 

 1.3 Problem Description 
The stochastic dynamic systems are dynamic system evolves as time passes. It is generally easier to 

explain the ideas with a discrete time model, in which time takes discrete values denoted as l = 0,1,2,.. 

Here, the word “state” is used in a strict sense that a sample path X is a Markov chain. This means that 

given the current state Xl, the system’s future behavior {Xl+1,Xl+2,...} is independent of its past history 

{X0,X1, . . . , Xl−1}.This is called the Markov property. Intuitively, a state completely captures the 

system’s current status in regard to its future evolution. 

In optimization problems, at any time l, we can apply an action. The actions A0, A1... may affect the 

evolution of the system. With the Markov model, the actions control the transition probabilities of the 

state process. 
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Figure 1. A Model of Learning and Optimization 

A generic description of the learning and optimization is presented in figure 1 above. The shaded area 

represents a stochastic dynamic system. The system is essentially a black box and it can only interact 

with the outside through its inputs and outputs. The inputs provide a vehicle to intervene or to control 

the operation of the system, and/or to affect the reward of the operation. The outputs provide a window 

for observing the system. That is, the outputs are the observations. Associated with every system, there 

is a performance measure η. In the figure, as an example, η is taken to be the mean of the average 

reward. 

The goal of an optimization problem is to answer the following question: 

 Based on the information we know about the system, i.e., the output history learned from 

observation. 

 The input (action) history. 

 What action should we take at a particular time so that we can obtain the best possible system 

performance? 

In engineering applications, at the design stage, sample paths can only be obtained by simulation 

following a system model; and while a system is operating, the paths can also be obtained by direct 

observation. If learning and optimization is implemented by simulation, then the approach is called a 

simulation-based approach.  



7 | P a g e  

For real systems, performance optimization (or improvement) decisions can be made through learning 

the system behavior by observing its sample paths recorded while the system is operating without 

interruption; we call such an approach an on-line app. 

1.4 Optimal Policies 
The main element in learning and optimization is the policy.  

1.4.1 Open-Loop Policies 

Figure 2. Shows the structure of an open loop policy system. With an open-loop policy, the output-and-

action history are not used in determining the actions; i.e., the function Al = dl (Hl) does not depend on 

Hl, l = 0,1,... , at all. The outputs may be random; the best policy corresponds to the best average 

performance. 

 

Figure 2. The Open Loop Policy System 

1.4.2 Closed-Loop (Feedback) Policies 

If the system is involved with randomness and there are observable outputs, a fixed sequence of actions 

may not lead to the best performance. In such cases, in addition to the past history of the actions, the 

action chosen at time l, Al, should also depend on the observations up to time l. This corresponds to the 

“closed-loop” or “feedback” control in control theory. 

When a system involves randomness, how the observation Yl evolves after an action is taken is the 

system’s intrinsic character, which is not controlled by us. In other words, if we choose action Al, then 

the nature will determine Yl+1, and so on. The best thing we can do is to use all the information that is 
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available to us up to time l to determine the action Al =dl(Hl) such that on average the system 

performance is the best. Such a policy depending on the observation history is called a feedback policy 

or closed-loop policy in control theory. Unlike the open-loop policies, actions in a feedback policy 

cannot be pre-determined before the system operates. 

Table 1. Gives an example of possible histories of actions and observations and their corresponding 

performance. To save space, in the table, we assume that for some reasons the observations of the 

system at time l =0 and l=1are fixed as y0 and y1, respectively. The observation at l=2, however, may 

take either 0 or y1, depending on the randomness involved. We further assume that the probabilities of 

Y2 =y0 andY2 =y1 are both 0.5, equally. As shown in the table, there are two possible histories 

corresponding to each action sequence; e.g., if we take action sequence{α0,α1,α0},we may in fact have 

either h4:={y0,α0,y1,α1,y0,α0}or h5:={y0,α0,y1,α1,y1,α0} with an equal probability of 0.5, respectively. 

We find that the average performance for every action sequence is the same as the performance 

corresponding to the same action sequence in Table 1. 

Table 1. The Action-Observation Histories and Their Rewards
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The structure of a feedback or a closed-loop policy is shown in Figure 3. In both examples, we do not 

know how the actions control the system’s operation. 

 

Figure 3. The Optimal Action Depends on the Action-Observation History 

1.5 Fundamental Limitations of Learning and Optimization 

1.5.1 Exhaustive Search is not feasible 

A set of policies constitutes a policy space. To find an optimal policy in a given policy space is a typical 

search problem. However, even for a small problem, the policy space is too large for the exhaustive 

search approach. The number of policies increases exponentially with respect to the number of states. 

Therefore, exhaustive search, which requires computing or comparing the performance of every policy, 

is not computationally feasible for most practical problems. 

1.5.2 Learning and Optimization 

To develop efficient algorithms for performance optimization, we need to explore the special features 

of a system. This process is called learning. For dynamic systems, learning may involve observing and 

analyzing a sample path of a system to obtain necessary information; this is in the normal sense of the 

word “learning”, as it is used in research areas such as reinforcement learning. 

1.6 The Fundamental Limitations of Learning and Optimization 
1.  A system can be run and/or studied under only one policy at a time. 
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2.  By learning from the behavior of a system under one policy, we cannot obtain the performance 

of other policies, if no structural information of the system is available. 

3.  We can only compare two policies at a time. 

These simple rules describe the boundaries in developing learning and optimization approaches. First 

of all, if there is no structural information for the system, from the fundamental limitations A and B, 

we need to observe/analyze every policy to get or to estimate its performance, and from the fundamental 

limitation C, for M policies we need to make M−1 comparisons. This is the exhaustive search method. 

1.7 Performance Gradients 
As indicated by the fundamental limitations 1 and 2, if we analyze a system’s behavior under one 

policy, we can hardly know its behavior under other policies. It is natural to believe that if two policies 

are “close” to each other, then the system under these two policies may behave similarly. If a policy 

space can be characterized by a continuous parameter θ, then two policies are “close” if their 

corresponding values for θ are close. Such a policy space is called a continuous policy space. With 

some knowledge about the system structure under different policies, by studying the behavior of a 

system under one policy, we can determine the performance of the system under the policies in a small 

neighborhood of this policy; i.e., determine the performance gradient.  

The gradient method does not apply to discrete policy spaces. For discrete policy spaces, we need to 

compare the performance of different policies that may not be close to each other. With some 

assumptions on the system structure, by studying the behavior of a system under one policy, we can 

find a policy that performs better, if such a policy exists. In summary, if no information about the 

system structure is available, we can only do exhaustive, or blind, searches in the policy space. There 

are different types of policies: those depending on the histories of both input actions and output 

observations, and those depending only on the current state. If we know something about the structure 

and the dynamics of the system, we may develop efficient optimization techniques (analytic, 

simulation, on-line, learning, etc.). 

Different disciplines in learning and optimization, such as Markov Decision Processes (MDPs) in 

operations research, Perturbation Analysis (PA) in discrete event dynamic systems (DEDSs), 

reinforcement learning (RL) in computer science, and identification and adaptive control (I&AC) in 

control systems, have different formulations of the system structures. These different disciplines also 

differ in the way they utilize the structural information. 
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Roughly speaking, both MDPs and RL assume a Markov structure for the systems; PA started with a 

queuing network-type of structure and was extended to the Markov structure later; in I&AC, the system 

evolution is described by dynamic (differential or difference) equations. By and large, the MDP 

literature focuses on analytical solutions, and the parameters are usually assumed to be known to us. 

RL emphasizes the learning aspect, and algorithms are developed based on sample paths obtained from 

simulation. PA extracts information from a sample path to answer the what-if type of questions:  

“What is the effect on a system performance if the system parameter or structure changes?” 

This is done by predicting the system behavior after the parameter or structural changes. 

A sample path of the Markov chain (see Figure 4) is denoted as X={X0, X1,...}, with Xl ∈S being the 

state at time i =0,1,.... 

 

Figure 4. A sample path of a Markov Chain 

We study the long-run average performance measure η of a Markov Chain defined as, 

 

 

  

Three state Markov chain transition is described in figure 5,  

𝜂(𝑖) = lim
𝐿→∞

1

𝐿
∑ 𝐸[𝑓(𝑋𝑖)𝐼 𝑋0 = 𝑖] 

𝐿−1

𝑖=0
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Figure 5. The State-Transition Diagram of a Three-State Markov Chain 
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Chapter  02 
 

2.1 Perturbation Analysis 
Perturbation analysis (PA) is the core of the gradient-based (or policy gradient) learning and 

optimization approaches. The basic principle of PA is that the derivative of a system’s performance 

with respect to a parameter of the system can be decomposed into the sum of many small building 

blocks, each of which measures the effect of a single perturbation on the system’s performance, and 

this effect can be estimated on a sample path of the system. 

PA estimates the performance derivatives with respect to system parameters by analyzing a single 

sample path of a stochastic dynamic system. The most significant contribution of PA is that it testifies 

to the fact that a sample path of a dynamic system may contain information not only for the performance 

of the system under observation, but also for the derivatives of the performance with respect to system 

parameters. Perturbation analysis was first developed for queuing systems and was later extended to 

Markov systems. 

2.2 Perturbation Analysis of Markov Chains 
Consider an ergodic (irreducible and a periodic) Markov chain X = {Xl : l ≥ 0} on a finite state space   

S = {1,2,... ,S} with a transition probability matrix P = [p(j|i)]S i,j=1. Its steady-state probabilities are 

denoted as a row vector π = (π(1),... ,π(S)) and the reward function is denoted as a (column) vector        

f = (f(1),f(2),... ,f(S))T. We have Pe = e, where e = (1,1,... ,1)T, and the probability flow balance 

equation π = πP. We first consider the long-run average reward (or, simply, the average reward) as the 

performance measure, which is defined as follows: 

                                                          η = Eπ(f) = ∑ π(i)f(i) = πf 

where Eπ denotes the expectation corresponding to the steady-state probability π on S. 

Pδ = P + δΔP = δP  + (1 − δ)P 

with 0 ≤ δ ≤ 1 and ΔP = P  − P := [Δp(j|i)]. Since Pe = P e = e, we have (ΔP)e = 0 and Pδe = e. 

For simplicity, we first assume that the Markov chain with transition probability matrix Pδ in (2.1) 

for all 0 ≤ δ ≤ 1 has the same reward function f, 

and we denote it as (Pδ,f). The steady-state probability of transition matrix Pδ is denoted as πδ and 
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the average reward of the Markov chain (Pδ,f) is denoted as ηδ = πδf. Then η0 = η = πf and η1 = η = 

πf. Set Δηδ = ηδ −η. The derivative of ηδ with respect to δ at δ = 0 is 

 

which can be viewed as the directional derivative in the policy space along the direction from policy 

P to policy P. The goal of perturbation analysis is to determine the performance derivative dηδ dδ by 

observing and/or analyzing the behavior of the Markov chain with transition probability matrix P. In 

particular, we wish to estimate this derivative by observing and analyzing a single sample path of the 

Markov chain with transition probability matrix P. 

 

Figure 6: The basic principle of perturbation analysis 

These basic principles are illustrated in figure 6. The important step in this approach is to determine the 

average effect of a single perturbation, i.e., the realization factor. The main idea of PA comes from the 

fact that given a sample path of the Markov chain with transition probability matrix P, we can construct 

a sample path of the Markov chain with transition probability matrix Pδ, when δ is small. Following 

the PA terminology, we call the Markov chain with transition probability matrix P the original Markov 

chain and that with Pδ the perturbed Markov chain. Their sample paths are called the original sample 

paths and the perturbed sample paths, respectively. 

We first review how to simulate a sample path for a Markov chain with transition probability matrix P. 

We generate a uniformly distributed random variable ξl ∈ [0,1). If 
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The performance measure η can be estimated from the sample path X. In fact, if the Markov chain is 

ergodic, we have 

 

w.p.1 stands for with probability 1,  

 

Then we have, 

 

To save computation, we may try to use the same sequence {ξ0, ξ1, . . . , ξl, ...} to generate the 

perturbed path (figure 7). However, we need to use 

 

 

Figure 7: Constructing a Perturbed sample path 
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2.3 Perturbation Realization Factors and Performance Potentials 
The sample path is perturbed from state i to state j. This perturbation will certainly affect the system’s 

behavior and the system’s performance. As shown in Figure 2.5, after l = 3, the perturbed Markov chain 

evolves differently from the original chain, until, at l = Lij, the perturbed path merges with the original 

one. The effect of the perturbation takes place in the period from l = 3 to Lij. In PA terminology, we 

say that the perturbation generated at l = 3 is realized by the system at l = L*ij = 6. 

In summary, there are a number of advantages of PA: It can estimate performance derivatives along all 

directions based on a single sample path of a Markov chain. It can estimate derivatives along any 

direction on line as a whole, and the ‘‘curse of dimensionality’’ issue does not appear; furthermore, the 

approach applies to any policy space or subspace with constraints.  

However, PA-based approaches may reach a local optimal point. In addition to PA of Markov systems, 

efficient algorithms were developed by PA principles for queuing systems; these algorithms utilize the 

special ‘‘coupling’’ feature among servers to determine the effect of a single perturbation. Recently, 

fluid model of queuing systems was introduced into PA, which provides good approximations. 

2.4 Performance Derivation Formulas 
To derive the performance derivative dηδ / dδ at policy (P,f) along any direction ΔP, we consider a 

sample path X with a transition probability matrix P consisting ofL, L>>1, transitions. Among these 

transitions, on average, there are Lπ(k) transitions at which the system is in state k. Each time when X 

visits state is after visiting state k, because of the change from Pto Pδ =P+δΔP, the perturbed path Xδ 

may have a jump, denoted as from state i to state j(i.e., after visitingk, X moves to I and Xδ moves to 

j), as shown in Figure 2.5. For convenience, we allowi=jas a special case. A “real jump” (with i!=j) 

happens rarely. Denote the probability of a jump from it after visiting state k as p(i, j|k). We have, (see 

the scanned handwritten calculations on the next page) 
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2.5 Performance sensitivity of Markov Processes 
Markov processes. Consider an irreducible and aperiodic (ergodic) Markov process X={Xt,t ≥ 0}with 

a finite state space S={1,2,...,S} and an infinitesimal generator B=[b(i, j)], where b(i, j) ≥ 0, I != j, b(i, 

i) < 0. Let π be the steady-state probability (row) vector.  

We have πe=1and  

Be = 0,                  πB = 0. 

We can construct an embedded Markov chain (discrete-time) that has the same steady-state probability 

as the Markov process X. This is called uniformization. Thus, the sensitivity analysis of a Markov 

process can be converted to that of a Markov chain, and then it can be translated to Markov processes. 

2.6 Performance Sensitivities of Semi-Markov Processes 
A semi-Markov process X={Xt, t ≥ 0}defined on a finite state space S={1,2,...,S}. Let T0,T1,...,Tl 

,...,withT0= 0, be the transition epoches. The process is right continuous so the state at each transition 

epoch is the state after the transition. Let Xl =XTl ,l=0,1,2,....Then,{X0,X1,...} is the embedded Markov 

chain. The interval [Tl,Tl+1) is called a period and its length is called the sojourn time in state Xl. 

2.7 The Embedded Chain and the Sojourn (Break) Time 
The semi markov is defined as, 

 

Which we assume does’t not depend on time homogeneous. Set,  

 

 

Normally, p(i|i) = 0, for all I ∈ S. But, in general, we may allow the process to move from a state to 

itself at the transition epoches; in such a case, p(i|i) may be nonzero and our results still hold. However, 



20 | P a g e  

a transition from a state to the same state cannot be determined by observing only the system states of 

a semi-Markov process. 

The matrix [p(j|i)] is the transition probability matrix of the embedded Markov chain. We assume that 

this matrix is irreducible and aperiodic [20]. 

Let 

 

be the mean of the sojourn time in state i. We also assume that m(i) < ∞ for all i∈S. Under these 

assumptions, the semi-Markov process is irreducible and aperiodic and hence ergodic. Define the 

hazard rates as, 

 

                    and 

 

 

 

The latter is the rate at which the process moves from I to j in [t, t+dt) given that the process does not 

move out from state i in [0,t). 

2.8 Performance Sensitivity Formulas 
Consider a semi-Markov process X = {(Xt,Yt),t ≥ 0}with T0 = 0 and an initial stateX0 =j. We define 

the reward function as f (i, j), i, j ∈S, where f: S×S →R. The long-run average reward is, 

 

Which does not depend on j because X is ergodic. 
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2.9 Perturbation Analysis of Queuing System 
The early works on perturbation analysis (PA) focused on queueing systems. The idea of PA was first 

proposed for the buffer allocation problem in a serial production line and was first studied for queueing 

networks. The special structure of queueing systems, especially the interactions among different 

customers or different servers, makes PA a very efficient tool for estimating the performance 

derivatives with respect to the mean service times based on a single sample path. This section contains 

an overview of the main results of PA of queueing systems. 

The main difference between PA of Markov chains and PA of queueing systems is that in the former, 

a perturbation is a “jump” on a sample path from one state to another due to parameter changes, while, 

in the latter, it is a small (infinitesimal) delay in a customer’s transition time. Some queueing (such as 

the Jackson-type) networks can be modelled by Markov processes and therefore the theory and 

algorithms developed for Markov processes can be applied. However, because of the special features 

of a queueing system, the performance derivatives with respect to service time changes can be obtained 

by a much more efficient and more intuitive approach, which applies to non Markov queueing systems 

as well. 

The dynamic nature of a system’s behavior is explored more clearly in PA of queueing systems. Its 

basic principle can be described as follows: a small increase in the mean service time of a server 

generates a series of small delays, called perturbations, in the service completion times of the customers 

served by that server. Each such perturbation of a customer’s service completion time will cause delays 

in the service completion times of other customers (at the same server or at other servers). In other 

words, a perturbation will be propagated through the system due to the interactions among customers 

and servers. Thus, a perturbation will affect the system performance through propagation. The average 

effect of a perturbation on the system performance can be measured by a quantity called the perturbation 

realization factor (PRF). 

Finally, the effect of a change in the mean service time of a server equals the sum of the effects of all 

the perturbations generated on the service completion times of the server due to this change in its mean 

service time.  

2.10 Three Fundamental rules of Perturbation Analysis 
1. Perturbation generation 

2. Perturbation propagation 

3. Perturbation realization. 

Figure 8, illustrates a sample path of a three-server five-customer closed queueing network. The vertical 

dashed arrows signal the customer transitions among servers, and each of the three staircase-like curves 

indicates the evolution of a server in the network. 
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Figure 8: A Sample Path of a Closed Queueing Network with M= 3 and N=5 

2.11 The Goal of Perturbation Analysis 
The goal of PA is to obtain an estimate for the performance derivatives               ,v=1,2,...,M, by 

observing and analyzing an original sample path. This is shown in Figure 9, in which we use θ to 

denote a generic parameter. 

 

Figure 9: Goal of PA 
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Chapter 03 

3.1 Learning and Optimization with Perturbation Analysis 
In this chapter, the author first discussed the numerical methods and sample-path-based algorithms for 

estimating performance potentials, and then derived the sample-path-based algorithms for estimating 

performance derivatives. In performance optimization, the process of estimating the potentials and 

performance derivatives from a sample path is called learning. This chapter is closely related to 

reinforcement learning. 

 

 

Figure 8: Perturbation Analysis vs. Policy Gradients 

The authors first study the potentials for ergodic Markov chains (discrete time), and the results can be 

extended to ergodic Markov processes (continuous time) naturally. The first numerical method depends 

on the equation for performance potentials. PA and PG are modeled in figure 8 as a qualitative 

comparison. 

3.2 The Fundamental Ergodic Theorem  
This theorem is very useful in proving the convergence results related to sample-path-based algorithms, 

we will refer to it as the Fundamental Ergodicity Theorem. It can be represented as  

Let X = {Xn,n ≥ 0} be an ergodic Markov chain on state space S; φ(x1,x2,...), xi ∈ S, i = 1,2... , be a 

function on S∞. Then the process Z = {Zn,n ≥ 0} with Zn = φ(Xn,Xn+1,...) is an ergodic Markov chain. 

 In particular, we have 

 

lim
𝑁→∞

1

𝑁
∑ 𝜙(𝑋𝑛,

𝑋𝑛 + 1, … . . ) = 𝐸[𝜙(𝑋𝑛, 𝑋𝑛 + 1, … . . )]

𝐿−1

𝑖=0
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where “E” denotes the steady-state expectation of the Markov chain Z, and the right-hand side of this 

equation does not depend on n. On a sample path of X = {Xl,l ≥ 0} with X0 = i, for each pair of states j 

and i, we define two sequences of epochs {lk(j)} and {lk(i)} as follows: diagrammatic representation is 

in figure 9, 

l0(i) = 0, 

lk(j) = the epoch that {Xl} first visits state j after lk−1(i), k ≥ 1, 

lk(i) = the epoch that {Xl} first visits state i after lk(j), k ≥ 1. (3.18) 

Note that {lk(j)} and {lk(i)} are well defined on a sample path;  

 

Figure 9: Estimating γ(i,j) 

Introducing co-relation between the two sample paths X and X is called the coupling approach in 

simulation. In fact, it is well known that introducing co-relation between the random samples of two 

random variables may reduce the variance in estimating the difference of their mean values. 

The coupling method is generally used in simulation to reduce the variance of the estimates for the 

difference of the mean of two different random variables. Applying this approach to estimate γ(i,j) = 

g(j) − g(i) with two coupled sample paths still requires further research and we will not discuss the 

details in this book. Problems 3.9 and 3.10 provide a brief introduction to this variance-reduction 

simulation approach. 
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The performance potentials obtained by numerical methods or by learning from sample paths can be 

used to calculate the performance derivatives using the performance derivative formula 

 

One disadvantage of this approach is that it requires us to estimate the potentials for all the states. This 

is sometimes difficult for a number of reasons: The number of states may be too large; some states may 

be visited very rarely; and for systems with special structures (e.g. queueing networks), it may not be 

convenient even to list out all the states. Therefore the performance derivatives can be estimated 

directly from sample paths without estimating each individual potential. 

It is interesting to note the difference in the process of developing the PA theory for both queuing 

systems and Markov systems. For queuing systems, the performance derivative estimation algorithms 

were developed first, and the concept of the perturbation realization factor and the performance 

derivative formula were developed later to provide a theoretical background for the algorithms. For 

Markov systems, the concept of performance potentials and performance derivatives were developed 

first, and the sample-path-based algorithms, both for potentials and for derivatives directly, were 

proposed later, by using the formulas. The algorithms for estimating c(f)(n,v) in queuing systems should 

be easy to develop; however, there has not been much effort in this direction, perhaps because there 

have not been many applications with c(f)(n,v) alone so far. 

3.3 Optimization: 
The PA gradient estimates can be used to implement sample-path-based performance optimization. 

When the sample path is long enough, the estimates are very accurate and we can simply use them in 

any gradient-based optimization procedure for deterministic systems. If the sample path is short, then 

the gradient estimates contain stochastic errors, and stochastic approximation techniques have to be 

used in developing optimization algorithms. 

In sample-path-based implementation, the gradient estimation error depends on the length of the sample 

path. Therefore, the convergence of the optimization algorithm relies on the coordination among the 

lengths of sample paths in every iteration and the step sizes. 

There are two ways to implement optimization algorithms with PA.  
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 First, we can run a Markov, or a queuing, system under one set of parameters for a relatively 

long period to obtain an accurate gradient estimate and then update the parameters accordingly. 

When the estimation error is small, we hope that this standard gradient-based method for 

performance optimization of deterministic systems works well. 

 Second, when the sample paths are short, we need to use the stochastic approximation based 

algorithm. It is well known that the standard step size sequence (e.g., κk = k 1) makes the 

algorithm very slow, so some ad hoc methods are usually used in practice to speed up the 

convergence. 

3.4 Optimization with Perturbation Analysis (PA) 
3.4.1 Gradiant Methods 

The PA gradient estimates can be used to implement sample-path-based performance optimization. 

When the sample path is long enough, the estimates are very accurate and we can simply use them in 

any gradient-based optimization procedure for deterministic systems. If the sample path is short, then 

the gradient estimates contain stochastic errors, and stochastic approximation techniques have to be 

used in developing optimization algorithms.  

3.4.2 Sample path based implementation  

In sample-path-based implementation, the gradient estimation error depends on the length of the sample 

path. Therefore, the convergence of the optimization algorithm relies on the coordination among the 

lengths of sample paths in every iteration and the step sizes.  

As discussed, there are two ways to implement optimization algorithms with PA.  

First, we can run a Markov, or a queueing, system under one set of parameters for a relatively long 

period to obtain an accurate gradient estimate and then update the parameters according to (3.51). When 

the estimation error is small, we hope that this standard gradient-based method for performance 

optimization of deterministic systems works well. 

Second, when the sample paths are short, we need to use the stochastic approximation based algorithm. 
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3.5 Applications of Perturbation Analysis 
There have been hundreds of papers in the area of PA and its applications in the literature, few well 

knows application areas are as follow, 

1. Capacity planning 

2. Inventory problems 

3. Resource allocation 

4. Flow control 

5. Bandwidth provisioning 

6. Traffic shaping 

7. Pricing 

8. Stability and reliability analysis 

9. Network Communications 

10. Manufacturing and logistics. 
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4. Referenced book 
This book is written by Xi-Ren Cao, from Hong Kong University of Science 

and Technology (HKUST). This book is primarily written on performance 

optimization of modern engineering systems. As Performance optimization is 

very important in the design and operation of modern engineering systems in 

many areas, including communications (Internet and wireless), 

manufacturing, robotics, and logistics. Most engineering systems are too 

complicated to be modelled, or the system parameters cannot be easily identified. Therefore, learning 

techniques have to be utilized. The book is available online on the following link, 

https://link.springer.com/book/10.1007%2F978-0-387-69082-7  

Acknowledgment 

I am really thanks to Prof. Yin BaoQun for his kind support during this course. 

He is very kind, humble, supportive and hardworking professor. He is very 

sound in theoretical aspects of mathematics and information science. He 

taught us the Mathematical Theory in Information Science course by selecting 

some good topics from a well know reference book “Stochastic Learning and 

Optimization – A Sensitivity based Approach by Xi-Ren Cao”  and discussed all the nitty gritty of the 

basic concepts of learning using Markov Chain theory and Perturbation Analysis in a very detail manner 

in the class. I have learnt a lot in this course by myself that I never learnt before. Thanks to Prof. Yin 

Baoqun. 

My detailed webpage (blog) is http://jadoon956.wordpress.com  

https://link.springer.com/book/10.1007%2F978-0-387-69082-7
http://jadoon956.wordpress.com/

